Properties of Quantum Spin Systems and their Classical Limit joint work with prof. Valter Moretti, prof. Klaas Landsman, Dr. Robin

Reuvers & prof. Gerrit Groenenboom

Christiaan van de Ven

University of Trento

Trieste, 26 July 2019

• Quantum Curie-Weiss Hamiltonian as a discretization of a Schroedinger operator with a symmetric double well potential.

- Scientific paper yet available on the ArXiv. 'Quantum spin systems versus Schroedinger operators: A case study in spontaneous symmetry breaking'.

• Deformation quantization & application to quantum spin systems with their classical limit, special emphasis to spontaneous symmetry breaking (SSB).

- Publication in preparation.

QUANTUM CURIE-WEISS HAMILTONIAN AS A 1D DISCRETIZATION OF A SCHROEDINGER OPERATOR WITH A SYMMETRIC DOUBLE WELL POTENTIAL.

Properties of the quantum Curie-Weiss model

• Quantum Curie-Weiss Hamiltonian h_N^{CW} defined on $\mathcal{H}_N = \bigotimes_{n=1}^N \mathbb{C}^2$ by:

$$h_N^{CW} = -\frac{J}{2N} \sum_{i,j=1}^N \sigma_3(i) \sigma_3(j) - B \sum_{i=1}^N \sigma_1(i).$$
(1)

- Existence of an invariant subspace for h_N^{CW} and a basis such that the restriction to this subspace represented in this basis is a tridiagonal matrix. One can show that the ground state is in the subspace.
- This subspace is the symmetric subspace $\operatorname{Sym}^{N}(\mathbb{C}^{2})$, namely the range of the symmetrizer $S_{N} = \frac{1}{N!} \sum_{\sigma \in \mathbf{S}_{N}} L_{\sigma}$. The corresponding basis is the canoncial (Dicke) basis $\{|k, N k\rangle\}$, where the vectors $|k, N k\rangle$ are given by permutations of qubits:

$$|k, N-k\rangle = \frac{1}{\sqrt{\binom{N}{k}}} \sum_{j,l} P_{j,l} \underbrace{|\uparrow\uparrow\cdots\uparrow}_{k \text{ times}} \underbrace{\downarrow\downarrow\cdots\downarrow}_{N-k \text{ times}}, \quad (k = 0, ..., N).$$
(2)

• Principle: a process to approximate derivatives by linear combinations of function values at grid points.

• We focus on the central difference approximation method and apply this to the second order differential operator d^2/dx^2 , which we would like to discretize with uniform grid spacing of $\Delta = 1/N$ on the domain $\Omega = [0, 1]$.

• The second order derivative for a single-variable smooth function f is then approximated by

$$f_i'' \approx \frac{f_{i-1} - 2f_i + f_{i+1}}{\Delta^2} \quad (i = 1, ..., N),$$
 (3)

where $f_i = f(x_i) = f(i\Delta)$.

Discretization: uniform case

• In matrix form we find

$$f'' \approx \frac{1}{\Delta^2} \begin{pmatrix} -2 & 1 & & \\ 1 & -2 & 1 & \mathbf{0} \\ & \ddots & \ddots & \ddots \\ & \mathbf{0} & 1 & -2 & 1 \\ & & & 1 & -2 \end{pmatrix} f.$$
(4)

• This matrix is the result of a central finite difference discretization method of the second order derivative on a uniform grid consisting of Npoints of length $\Delta \cdot N$, with uniform grid spacing Δ . In this specific case, we have $\Delta = 1/N$. We denote this tridiagonal matrix by $\frac{1}{\Delta^2}[\cdots 1 - 2 \ 1 \cdots]_N$. • The other way around: suppose we are given a symmetric tridiagonal matrix A of dimension N with constant off- and diagonal elements,

$$A = \begin{pmatrix} b & a & & \\ a & b & a & \mathbf{0} \\ & \ddots & \ddots & \ddots \\ & \mathbf{0} & a & b & a \\ & & & & a & b \end{pmatrix}$$

• Goal: rewrite this matrix as a sum of kinetic and potential energy:

$$A = a[\cdots 1 \frac{b}{a} 1 \cdots]_N = a[\cdots 1 - 2 1 \cdots]_N + \operatorname{diag}(b + 2a).$$
(6)

(5)

• It follows that A = T + V, for $T = a[\cdots 1 - 2 1 \cdots]_N$, and V = diag(b + 2a).

• In view of the above, the matrix T corresponds to a discretization of a second order differential operator (kinetic energy), with uniform grid spacing $1/\sqrt{a}$ on the grid of length N/\sqrt{a} . Since the matrix V is a diagonal matrix, it can be seen as a multiplication operator. Hence, we can identify A with a discretization of a Schrödinger operator.

 \bullet Apply this idea to the quantum Curie-Weiss tridiagonal matrix \to extract a discretized Schroedinger operator.

• The Curie-Weiss tridiagonal matrix will be interpreted as an approximation (N large) of a 1d discretized Schrödinger operator on $L^2[0,1]$ with a symmetric double well potential $V_N(x)$:

$$-\frac{1}{L^2 N^2} \frac{d^2}{dx^2} + V_N(x), \tag{7}$$

where 1/N plays the role of \hbar .

• Idea: split the tridiagonal matrix into two parts, one corresponding to the kinetic energy and the other to the potential energy.

• Main problem, our tridiagonal matrix does not have constant off-diagonal elements (entries even vary with the dimension), so we cannot apply the previous theory directly.

• However, In the semi-classical limit, the potential energy dominates the kinetic energy. We extracted this potential and observed that is has the shape of a symmetric double well.

• Spectral properties for bound states of our tridiagonal matrix and the discretization of (7), i.e., $-\frac{1}{L^2}[\cdots 1 - 2 \ 1 \cdots]_N + V_N(x)$ have been compared. They coincide up to a very good approximation and improve with increasing N.

• Ground state is localized in the minima of these wells, and is Gaussian shaped, exactly as expected for such a Schroedinger operator.

• To conclude, the compressed quantum Curie-Weiss model can be seen as a discretization of a Schrödinger operator with a symmetric double well potential.

< □ > < □ > < □ > < □ > < □ > < □ >

Deformation quantization & Application to quantum spin systems with their classical limit, special emphasis to spontaneous symmetry breaking (SSB).

э

• Example. Consider $h_{\hbar} = -\hbar \frac{d^2}{dx^2} + V(x)$, and the corresponding ground state eigenfunction $\psi_{\hbar}^{(0)}$, assuming the spectrum is discrete. How can $\lim_{\hbar \to 0} \psi_{\hbar}^{(0)}$ be interpreted?

• Framework to deal with this question exists under the name deformation quantization. Mathematical concept establishing a link between classical and quantum mechanics, using the language of C^* -algebras and the theory of Poisson manifolds.

• Basic idea: A continuous bundle of C^* -algebras over base space I consists of a C^* -algebra A, a collection of C^* -algebras $(A_{\hbar})_{\hbar \in I}$ with norms $|| \cdot ||_{\hbar}$, and surjective homomorphisms $\varphi_{\hbar} : A \to A_{\hbar}$ for each $\hbar \in I$, such that several (continuity) properties are satisfied.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Deformation quantization

• A (strict) deformation quantization of a Poisson manifold X consists of a continuous bundle of C*-algebras $(A, \{\varphi : A \to A_{\hbar}\}_{\hbar \in I})$ over I, along with maps

$$Q_{\hbar}: \widetilde{A}_0 \to A_{\hbar} \quad (\hbar \in I),$$

where \tilde{A}_0 is a dense subspace of $A_0 = C_0(X)$, such that:

- 1. Q_0 is the inclusion map $\tilde{A}_0 \hookrightarrow A_0$;
- 2. Each map Q_{\hbar} is linear and satisfies $Q_{\hbar}(f^*) = Q_{\hbar}(f)^*$.

3. For each $f \in \tilde{A}_0$, the following map is a continuous section of the bundle:

$$0 o f;$$
 (8)
 $\hbar o Q_{\hbar}(f).$ ($\hbar > 0$)

Deformation quantization

4. For all $f, g \in \tilde{A}_0$ one has the Dirac-Groenewold-Rieffel condition: $\lim_{\hbar \to 0} || \frac{i}{\hbar} [Q_{\hbar}(f), Q_{\hbar}(g)] - Q_{\hbar}(\{f, g\}) ||_{\hbar} = 0.$

- This map 'transfers' classical information to quantum data, and can therefore be used to identify classical theories as limits of quantum theories.
- Example 1. We define for any $\hbar \in [0,1]$:

$$egin{aligned} Q_{\hbar}: C_0(\mathbb{R}^2) &
ightarrow B_{\infty}(L^2(\mathbb{R})); \ Q_{\hbar}(f) &= \int_{\mathbb{R}^2} rac{dpdq}{2\pi\hbar} f(p,q) |\phi_{\hbar}^{(p,q)}
angle \langle \phi_{\hbar}^{(p,q)}|, \end{aligned}$$

where the projections $|\phi_{\hbar}^{(p,q)}\rangle\langle\phi_{\hbar}^{(p,q)}|$ are coming from so-called Schroedinger coherent states $\phi_{\hbar}^{(p,q)}$ on \mathbb{R}^2 .

Christiaan van de Ven (UniTN)

• Example 2. We define for any $1/N \in 1/\mathbb{N} \cup \{0\}$:

$$Q_{1/N}: C(S^2) \to B(\mathcal{H}_N);$$

 $Q_{1/N}(f) = rac{N+1}{4\pi} \int_{S^2} d\mu(\Omega) f(\Omega) |\Omega_N\rangle \langle \Omega_N |,$

where μ is a measure on the sphere S^2 . The projections $|\Omega_N\rangle\langle\Omega_N|$ are coming from so-called spin coherent states, induced by points $\Omega \in S^2 = SU(2)/U(1)$.

• The maps Q_{\hbar} and $Q_{1/N}$ satisfy the properties of a deformation quantization in the above sense.

• In the these two examples, both coherent states are involved to define the quantization map.

• Concerning example 2, the limit $N \to \infty$ will be defined as follows: given unit vectors $\psi_N \in \mathcal{H}_N$, we say that that these vectors have a 'classical' limit if

$$\lim_{N \to \infty} \langle \psi_N, Q_{1/N}(f) \psi_N \rangle = \omega_0(f) \quad (f \in C(S^2)), \tag{9}$$

where ω_0 is some probability measure on S^2 , seen as a state on $C(S^2)$. A similar statement can be made for Example 1 sending $\hbar \to 0$, or for other quantization maps.

• In the context of Schroedinger operators (Example 1) the limit $\hbar \to 0$ typically means $m \to \infty$ at fixed \hbar in $\hbar^2/2m$, so that one may physically see $\hbar \to 0$ as a special case of $N \to \infty$.

Definition

Let A be a C*-algebra with time evolution, i.e., a continuous homomorphism $\alpha : \mathbb{R} \to \text{Aut}(A)$. A ground state of (A, α) is a state ω on A such that:

- 1. ω is time independent, i.e., $\omega(\alpha_t(a)) = \omega(a) \ \forall a \in A \ \forall t \in \mathbb{R}$.
- 2. The generator h_{ω} of the ensuing continuous unitary representation

$$t \mapsto u_t = e^{ith_\omega} \tag{10}$$

of \mathbb{R} on \mathcal{H}_{ω} has positive spectrum, i.e., $\sigma(h_{\omega}) \subset \mathbb{R}_+$, or equivalently $\langle \psi, h_{\omega} \psi \rangle \geq 0$ ($\psi \in D(h_{\omega})$).

• The set of ground states forms a compact convex subset of S(A), and we denote this set by $S_0(A)$. We moreover assume that pure ground states are pure states as well as ground states.

Christiaan van de Ven (UniTN)

From Quantum to Classical

Definition

Suppose we have a C^* -algebra A, a time evolution α , a group G, and a homomorphism $\gamma : G \to \operatorname{Aut}(A)$, which is a symmetry of the dynamics α in that

$$\alpha_t \circ \gamma_g = \gamma_g \circ \alpha_t \quad (g \in G, t \in \mathbb{R}).$$
(11)

The G-symmetry is said to be spontaneously broken (at temperature T = 0) if

$$(\partial_e S_0(A))^G = \emptyset, \tag{12}$$

• Here $\mathscr{S}^G = \{\omega \in \mathscr{S} \mid \omega \circ \gamma_g = \omega \ \forall g \in G\}$, defined for any subset $\mathscr{S} \in S(A)$, is the set of *G*- invariant states in \mathscr{S} . (12) means that there are no *G*-invariant pure ground states. (12) means that there are no *G*-invariant pure ground states. This means also that if spontaneous symmetry breaking occurs, then invariant ground states are not pure.

Christiaan van de Ven (UniTN)

Application to quantum spin Hamiltonians and SSB

• Special case. Assume $\psi_N^{(0)}$ is the ground state of some spin Hamiltonian on some Hilbert space \mathcal{H}_N (or e.g. the ground state eigenfunction of a Schroedinger operator). Given a quantization map, in view of equation (9) one can ask if the limit exists on some commutative algebra C(X).

• This is probably (numerical evidence) the case for the one-dimensional quantum Curie-Weiss model (for $X = B^3$ and some $Q_{1/N}$):

$$h_N^{QW} = -\frac{1}{N} \left(\sum_{x,y=1}^N \sigma_3(x) \sigma_3(y) + B \sigma_1(x) \right)$$

• Note that this limit (i.e. equation (9) with $\psi_N = \psi_N^{(0)}$) is different than the thermodynamic limit, where a infinite quantum spin system is considered.

Application to quantum spin Hamiltonians and SSB

• There is numerical evidence that the ground state eigenvector converges (in the above sense) to a classical mixed state given by $\omega_0^{(0)} = \frac{1}{2}(\omega_+ + \omega_-)$, where ω_0^{\pm} are Dirac measures (i.e. pure states) corresponding to the minima of the classical Hamiltonian on $C(B^3)$ which is given by $h = -(\frac{z^2}{2} + Bx)$.

• One can show that these degenerate pure classical ground states ω_0^{\pm} are not \mathbb{Z}_2 -invariant (for 0 < B < 1), under the homomorphism induced by the map $(x, y, z) \mapsto (x, -y, -z)$, which basically means that the pure classical ground states are not invariant under parity symmetry. According to our definition, one can show that the \mathbb{Z}_2 -symmetry is spontaneously broken. However, for finite N it can be shown that the ground state is unique and hence \mathbb{Z}_2 -invariant.

• Therefore, this theory also gives a mathematical explanation of spontaneous symmetry breaking (SSB).

Further research

• Generalize these type of quantization maps to more arbitrary spaces, like the state space S(B) of a unital C^* -algebra B

 $Q_{1/N}: C(S(B)) \to B^{\otimes N}.$

• Work in progress (with Valter Moretti): give a proof of the existence of a deformation quantization in the case $B = M_k(\mathbb{C})$. No coherent states, different approach is needed!

• Apply to spin Hamiltonians (e.g. quantum Curie Weiss-model or qauntum Ising model), and prove the possibly existence of classical limits. Try to understand natural emergent phenomena like SSB from this point of view.

• Different quantum Hamiltonians seem to share similar properties in their classical limit.

• Thank you for your attention! I hope you all enjoyed it, $_{\rm c}$, $_{\rm c}$

References

• G. Graffi, V. Grecchi, and G. Jona-Lasinio, Tunnelling instability via perturbation theory, Journal of Physics A: Mathematical and General 17, 2935-2944 (1984), doi:10.1088/0305-4470/17/15/011

• G. Jona-Lasinio, F. Martinelli, and E. Scoppola, New approach to the semiclassical limit of quantum mechanics, Communications in Mathematical Physics 80, 223–254 (1981), doi:10.1007/BF01213012.

• D. Kuzmin, Introduction to CFD, lecture 4: Finite difference method (2017), www. mathematik.uni-dortmund.de/ kuzmin/cfdintro/lecture4.pdf.

• Landsman, N.P. (2017). Foundations of Quantum Theory. Springer.

• Perelomov, A. (1986). Generalized Coherent States and their Applications. Berlin: Springer.

- 20

Christiaan van de Ven (UniTN)

SSB

• The non-degenerate states $(\psi_N^{(0)}, \psi_N^{(1)})$ converge (in algebraic sense) to mixed classical states, i.e.,

$$\lim_{N\to\infty}\psi_N^{(0)}=\lim_{N\to\infty}\psi_N^{(1)}=\omega_0^{(0)},$$

where $\omega_0^{(0)} = \frac{1}{2}(\omega_0^+ + \omega_0^-).$

• In contrast, the localized pure ground states

$$\psi_N^{\pm} = \frac{1}{\sqrt{2}} (\psi_N^{(0)} + \psi_N^{(1)}),$$

converge (in algebraic sense) to pure classical states, i.e.,

$$\lim_{N\to\infty}\psi_N^{\pm}=\omega_0^{\pm}.$$

Definition

Let *I* be a locally compact Hausdorff space. A continuous bundle of C^* -algebras over *I* consists of a C^* -algebra *A*, a collection of C^* -algebras $(A_{\hbar})_{\hbar \in I}$ with norms $|| \cdot ||_{\hbar}$, and surjective homomorphisms $\varphi_{\hbar} : A \to A_{\hbar}$ for each $\hbar \in I$, such that

1. The function $\hbar \mapsto ||\varphi_{\hbar}(a)||_{\hbar}$ is in $C_0(I)$ for all $a \in A$.

2. The norm for any $a \in A$ is given by

$$||\mathbf{a}|| = \sup_{\hbar \in I} ||\varphi_{\hbar}(\mathbf{a})||_{\hbar}.$$
(13)

3. For any $f \in C_0(I)$ and $a \in A$, there is an element $fa \in A$ such that for each $\hbar \in I$,

$$\varphi_{\hbar}(fa) = f(\hbar)\varphi_{\hbar}(a). \tag{14}$$

• A continuous (cross-) section of the bundle in question is a map $\hbar \mapsto \overline{a(\hbar) \in A_{\hbar}}$, $(\hbar \in I)$, for which there exists an $a \in A$ such that $a(\hbar) = \varphi_{\hbar}(a)$ for each $\hbar \in I$.

э