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Overview

• Quantum Curie-Weiss Hamiltonian as a discretization of a Schroedinger
operator with a symmetric double well potential.

- Scientific paper yet available on the ArXiv. ’Quantum spin systems versus
Schroedinger operators: A case study in spontaneous symmetry breaking’.

• Deformation quantization & application to quantum spin systems with
their classical limit, special emphasis to spontaneous symmetry breaking
(SSB).

- Publication in preparation.
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Quantum Curie-Weiss Hamiltonian as a 1d discretization of
a Schroedinger operator with a symmetric double well

potential.
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Properties of the quantum Curie-Weiss model

• Quantum Curie-Weiss Hamiltonian hCWN defined on HN =
⊗N

n=1 C2 by:

hCWN = − J

2N

N∑
i ,j=1

σ3(i)σ3(j)− B
N∑
i=1

σ1(i). (1)

• Existence of an invariant subspace for hCWN and a basis such that the
restriction to this subspace represented in this basis is a tridiagonal matrix.
One can show that the ground state is in the subspace.

• This subspace is the symmetric subspace SymN(C2), namely the range
of the symmetrizer SN = 1

N!

∑
σ∈SN

Lσ. The corresponding basis is the
canoncial (Dicke) basis {|k ,N − k〉}, where the vectors |k ,N − k〉 are
given by permutations of qubits:

|k,N − k〉 =
1√(N
k

)∑
j ,l

Pj ,l | ↑↑ · · · ↑︸ ︷︷ ︸
k times

↓↓ · · · ↓〉︸ ︷︷ ︸
N-k times

, (k = 0, ...,N). (2)
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Discretization: uniform case

• Principle: a process to approximate derivatives by linear combinations of
function values at grid points.

• We focus on the central difference approximation method and apply this
to the second order differential operator d2/dx2, which we would like to
discretize with uniform grid spacing of ∆ = 1/N on the domain Ω = [0, 1].

• The second order derivative for a single-variable smooth function f is
then approximated by

f ′′i ≈
fi−1 − 2fi + fi+1

∆2
(i = 1, ...,N), (3)

where fi = f (xi ) = f (i∆).
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Discretization: uniform case

• In matrix form we find

f ′′ ≈ 1

∆2



−2 1

1 −2 1 0
. . .

. . .
. . .

0 1 −2 1
1 −2

 f . (4)

• This matrix is the result of a central finite difference discretization
method of the second order derivative on a uniform grid consisting of N
points of length ∆ · N, with uniform grid spacing ∆. In this specific case,
we have ∆ = 1/N. We denote this tridiagonal matrix by

1
∆2 [· · ·1 − 2 1 · ··]N .

Christiaan van de Ven (UniTN) From Quantum to Classical Trieste, 26 July 2019 6 / 22



Discretization: uniform case

• The other way around: suppose we are given a symmetric tridiagonal
matrix A of dimension N with constant off- and diagonal elements,

A =



b a

a b a 0
. . .

. . .
. . .

0 a b a
a b

 (5)

• Goal: rewrite this matrix as a sum of kinetic and potential energy:

A = a[· · ·1 b

a
1 · ··]N = a[· · ·1 − 2 1 · ··]N + diag(b + 2a). (6)

Christiaan van de Ven (UniTN) From Quantum to Classical Trieste, 26 July 2019 7 / 22



Discretization: uniform case

• It follows that A = T + V , , for T = a[· · ·1 − 2 1 · ··]N , and
V = diag(b + 2a).

• In view of the above, the matrix T corresponds to a discretization of a
second order differential operator (kinetic energy), with uniform grid
spacing 1/

√
a on the grid of length N/

√
a. Since the matrix V is a

diagonal matrix, it can be seen as a multiplication operator. Hence, we
can identify A with a discretization of a Schrödinger operator.

• Apply this idea to the quantum Curie-Weiss tridiagonal matrix →
extract a discretized Schroedinger operator.
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Curie-Weiss versus Schroedinger operator

• The Curie-Weiss tridiagonal matrix will be interpreted as an
approximation (N large) of a 1d discretized Schrödinger operator on
L2[0, 1] with a symmetric double well potential VN(x):

− 1

L2N2

d2

dx2
+ VN(x), (7)

where 1/N plays the role of ~.

• Idea: split the tridiagonal matrix into two parts, one corresponding to
the kinetic energy and the other to the potential energy.

• Main problem, our tridiagonal matrix does not have constant
off-diagonal elements (entries even vary with the dimension), so we cannot
apply the previous theory directly.
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Curie-Weiss versus Schroedinger operator

• However, In the semi-classical limit, the potential energy dominates the
kinetic energy. We extracted this potential and observed that is has the
shape of a symmetric double well.

• Spectral properties for bound states of our tridiagonal matrix and the
discretization of (7), i.e., − 1

L2 [· · ·1 − 2 1 · ··]N + VN(x) have been
compared. They coincide up to a very good approximation and improve
with increasing N.

• Ground state is localized in the minima of these wells, and is Gaussian
shaped, exactly as expected for such a Schroedinger operator.

• To conclude, the compressed quantum Curie-Weiss model can be seen as
a discretization of a Schrödinger operator with a symmetric double well
potential.
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Deformation quantization & application to quantum spin
systems with their classical limit, special emphasis to

spontaneous symmetry breaking (SSB).
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Introduction

• Example. Consider h~ = −~ d2

dx2 + V (x), and the corresponding ground

state eigenfunction ψ
(0)
~ , assuming the spectrum is discrete. How can

lim~→0 ψ
(0)
~ be interpreted?

• Framework to deal with this question exists under the name deformation
quantization. Mathematical concept establishing a link between classical
and quantum mechanics, using the language of C ∗ -algebras and the
theory of Poisson manifolds.

• Basic idea: A continuous bundle of C ∗-algebras over base space I
consists of a C ∗-algebra A, a collection of C ∗-algebras (A~)~∈I with norms
|| · ||~, and surjective homomorphisms ϕ~ : A→ A~ for each ~ ∈ I , such
that several (continuity) properties are satisfied.
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Deformation quantization

• A (strict) deformation quantization of a Poisson manifold X consists of
a continuous bundle of C ∗-algebras (A, {ϕ : A→ A~}~∈I ) over I , along
with maps

Q~ : Ã0 → A~ (~ ∈ I ),

where Ã0 is a dense subspace of A0 = C0(X ), such that:

1. Q0 is the inclusion map Ã0 ↪→ A0;

2. Each map Q~ is linear and satisfies Q~(f ∗) = Q~(f )∗.

3. For each f ∈ Ã0, the following map is a continuous section of the
bundle:

0→ f ; (8)

~→ Q~(f ). (~ > 0)
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Deformation quantization

4. For all f , g ∈ Ã0 one has the Dirac-Groenewold-Rieffel condition:

lim
~→0
|| i
~

[Q~(f ),Q~(g)]− Q~({f , g})||~ = 0.

• This map ’transfers’ classical information to quantum data, and can
therefore be used to identify classical theories as limits of quantum
theories.

• Example 1. We define for any ~ ∈ [0, 1]:

Q~ : C0(R2)→ B∞(L2(R));

Q~(f ) =

∫
R2

dpdq

2π~
f (p, q)|φ(p,q)

~ 〉〈φ(p,q)
~ |,

where the projections |φ(p,q)
~ 〉〈φ(p,q)

~ | are coming from so-called

Schroedinger coherent states φ
(p,q)
~ on R2.
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Deformation quantization

• Example 2. We define for any 1/N ∈ 1/N ∪ {0}:

Q1/N : C (S2)→ B(HN);

Q1/N(f ) =
N + 1

4π

∫
S2

dµ(Ω)f (Ω)|ΩN〉〈ΩN |,

where µ is a measure on the sphere S2. The projections |ΩN〉〈ΩN | are
coming from so-called spin coherent states, induced by points
Ω ∈ S2 = SU(2)/U(1).

• The maps Q~ and Q1/N satisfy the properties of a deformation
quantization in the above sense.

• In the these two examples, both coherent states are involved to define
the quantization map.
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’Classical’ limit

• Concerning example 2, the limit N →∞ will be defined as follows: given
unit vectors ψN ∈ HN , we say that that these vectors have a ’classical’
limit if

lim
N→∞

〈ψN ,Q1/N(f )ψN〉 = ω0(f ) (f ∈ C (S2)), (9)

where ω0 is some probability measure on S2, seen as a state on C (S2). A
similar statement can be made for Example 1 sending ~→ 0, or for other
quantization maps.

• In the context of Schroedinger operators (Example 1) the limit ~→ 0
typically means m→∞ at fixed ~ in ~2/2m, so that one may physically
see ~→ 0 as a special case of N →∞.
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Intermezzo: Algebraic ground states and SSB

Definition

Let A be a C ∗-algebra with time evolution, i.e., a continuous
homomorphism α : R→ Aut(A). A ground state of (A, α) is a state ω on
A such that:

1. ω is time independent, i.e., ω(αt(a)) = ω(a) ∀a ∈ A ∀t ∈ R.
2. The generator hω of the ensuing continuous unitary representation

t 7→ ut = e ithω (10)

of R on Hω has positive spectrum, i.e., σ(hω) ⊂ R+, or equivalently
〈ψ, hωψ〉 ≥ 0 (ψ ∈ D(hω)).

• The set of ground states forms a compact convex subset of S(A), and
we denote this set by S0(A). We moreover assume that pure ground states
are pure states as well as ground states.
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Definition

Suppose we have a C ∗-algebra A, a time evolution α, a group G , and a
homomorphism γ : G → Aut(A), which is a symmetry of the dynamics α
in that

αt ◦ γg = γg ◦ αt (g ∈ G , t ∈ R). (11)

The G -symmetry is said to be spontaneously broken (at temperature
T = 0) if

(∂eS0(A))G = ∅, (12)

• Here S G = {ω ∈ S | ω ◦ γg = ω ∀g ∈ G}, defined for any subset
S ∈ S(A), is the set of G - invariant states in S . (12) means that there
are no G -invariant pure ground states. (12) means that there are no
G -invariant pure ground states. This means also that if spontaneous
symmetry breaking occurs, then invariant ground states are not pure.
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Application to quantum spin Hamiltonians and SSB

• Special case. Assume ψ
(0)
N is the ground state of some spin Hamiltonian

on some Hilbert space HN (or e.g. the ground state eigenfunction of a
Schroedinger operator). Given a quantization map, in view of equation (9)
one can ask if the limit exists on some commutative algebra C (X ).

• This is probably (numerical evidence) the case for the one-dimensional
quantum Curie-Weiss model (for X = B3 and some Q1/N):

hQW
N = − 1

N

( N∑
x ,y=1

σ3(x)σ3(y) + Bσ1(x)

)

• Note that this limit (i.e. equation (9) with ψN=ψ
(0)
N ) is different than

the thermodynamic limit, where a infinite quantum spin system is
considered.
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Application to quantum spin Hamiltonians and SSB

• There is numerical evidence that the ground state eigenvector converges
(in the above sense) to a classical mixed state given by

ω
(0)
0 = 1

2 (ω+ + ω−), where ω±0 are Dirac measures (i.e. pure states)
corresponding to the minima of the classical Hamiltonian on C (B3) which

is given by h = −( z
2

2 + Bx).

• One can show that these degenerate pure classical ground states ω±0 are
not Z2-invariant (for 0 < B < 1), under the homomorphism induced by
the map (x , y , z) 7→ (x ,−y ,−z), which basically means that the pure
classical ground states are not invariant under parity symmetry. According
to our definition, one can show that the Z2-symmetry is spontaneously
broken. However, for finite N it can be shown that the ground state is
unique and hence Z2-invariant.

• Therefore, this theory also gives a mathematical explanation of
spontaneous symmetry breaking (SSB).
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Further research

• Generalize these type of quantization maps to more arbitrary spaces, like
the state space S(B) of a unital C ∗-algebra B

Q1/N : C (S(B))→ B⊗N .

• Work in progress (with Valter Moretti): give a proof of the existence of
a deformation quantization in the case B = Mk(C). No coherent states,
different approach is needed!

• Apply to spin Hamiltonians (e.g. quantum Curie Weiss-model or
qauntum Ising model), and prove the possibly existence of classical limits.
Try to understand natural emergent phenomena like SSB from this point
of view.

• Different quantum Hamiltonians seem to share similar properties in their
classical limit.

• Thank you for your attention! I hope you all enjoyed it.
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SSB

• The non-degenerate states (ψ
(0)
N , ψ

(1)
N ) converge (in algebraic sense) to

mixed classical states, i.e.,

lim
N→∞

ψ
(0)
N = lim

N→∞
ψ

(1)
N = ω

(0)
0 ,

where ω
(0)
0 = 1

2 (ω+
0 + ω−0 ).

• In contrast, the localized pure ground states

ψ±N =
1√
2

(ψ
(0)
N + ψ

(1)
N ),

converge (in algebraic sense) to pure classical states, i.e.,

lim
N→∞

ψ±N = ω±0 .
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Continuous bundle of C ∗-algebras

Definition

Let I be a locally compact Hausdorff space. A continuous bundle of
C ∗-algebras over I consists of a C ∗-algebra A, a collection of C ∗-algebras
(A~)~∈I with norms || · ||~, and surjective homomorphisms ϕ~ : A→ A~ for
each ~ ∈ I , such that

1. The function ~ 7→ ||ϕ~(a)||~ is in C0(I ) for all a ∈ A.

2.The norm for any a ∈ A is given by

||a|| = sup~∈I ||ϕ~(a)||~. (13)

3. For any f ∈ C0(I ) and a ∈ A, there is an element fa ∈ A such that for
each ~ ∈ I ,

ϕ~(fa) = f (~)ϕ~(a). (14)
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• A continuous (cross-) section of the bundle in question is a map
~ 7→ a(~) ∈ A~, (~ ∈ I ), for which there exists an a ∈ A such that
a(~) = ϕ~(a) for each ~ ∈ I .
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