How long-range interactions slow down entanglement growth Alessio Lerose

July 25, 2019 - Trieste Junior Quantum Days
joint work with Silvia Pappalardi (also PhD student @ SISSA and ICTP, Trieste)

Entanglement entropy evolution

- unveils crucial properties of quantum dynamics and its classical simulations (MPS, TDVP)

$$
S_{A}(t)=-\operatorname{Tr} \hat{\rho}_{A}(t) \log \hat{\rho}_{A}(t) \quad \hat{\rho}_{A}(t)=\operatorname{Tr}_{B}|\psi(t)\rangle\langle\psi(t)| \quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}
$$

Paradigms with short-range interactions:

[Calabrese, Cardy - JSTAT, 2005]
[Nahum, Ruhman, Vijay, Haah - Phys. Rev. X, 2017]

[Žnidarič, Prosen, Prelovšek - Phys. Rev. B, 2008] [Bardarson, Pollmann, Moore - Phys. Rev. Lett., 2012] [Serbyn, Papić, Abanin - Phys. Rev. Lett., 2013]

- is very hard to measure

Long-range interactions

Classical physics:

(galaxies, plasmas, ionic crystals,...)

$$
J_{i j} \sim \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\alpha}} \quad \alpha \leq d \quad d \text {-dimensional }
$$

[Campa, Dauxois, Fanelli, Ruffo - UOP Oxford, 2014]

Quantum experiments in Atomic-Molecular-Optical physics:

Hyperfine levels of ultracold trapped ions:

$0.5<\alpha<1.8$

N.B. interactions are practically instantaneous!

Correlation spreading with long-range interactions

Violations of linear light-cone spreading

Typical behavior of spatiotemporal correlations:
(from Lepori, Trombettoni, Vodola, JStat '17)

Entanglement growth with long-range interactions

$$
\text { Quench from }\left|\psi_{0}\right\rangle=|\uparrow \uparrow \ldots \uparrow\rangle \text { with } \quad \hat{H}=-J \sum_{i \neq j}^{N} \frac{\hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}}{|i-j|^{\alpha}}-h \sum_{i}^{N} \hat{\sigma}_{i}^{z}
$$

$$
N=30,40,50 \quad D_{\mathrm{MPS}}=120
$$

[Schachenmayer, Lanyon, Roos, Daley - Phys. Rev. X, 2013]
[Buyskikh, Fagotti, Schachenmayer, Essler, Daley - Phys. Rev. A, 2016]

Collective dynamics $\quad \alpha=0$

- Hamiltonian $\tilde{\hat{H}}_{0}(t)$
- EX: $H_{\mathrm{LMG}}=-\frac{2 J}{N} \sum_{i \neq j=1}^{N} \hat{s}_{i}^{x} \hat{s}_{j}^{x}-2 h \sum_{i=1}^{N} \hat{s}_{i}^{z}$
- Collective spin $\quad \hat{\mathbf{S}}=\sum_{i=1}^{N} \hat{\mathbf{s}}_{i}$
- is extensive and conserved $\left[\hat{\mathbf{S}}^{2}, \hat{H}\right]=0$
- ground states $S=N / 2$

$$
N_{A}+N_{B}=N
$$

Classical trajectory
$+$ wavefunction squeezing

Dynamics: time-dependent Holstein-Primakoff

- decompose the collective spin $\quad \hat{\mathbf{S}}=\hat{\mathbf{S}}_{A}+\hat{\mathbf{S}}_{B}$

$$
\frac{1}{\sqrt{N}} \sim \Delta_{Q}=\Delta_{P}
$$

- Holstein-Primakoff: treat the spins as free bosons $\quad N \gg 1$
$\left(\hat{q}_{A}, \hat{p}_{A}\right)\left(\hat{q}_{B}, \hat{p}_{B}\right) \longleftrightarrow(\hat{Q}, \hat{P})$

Work in a reference frame following the classical spin

$$
\widetilde{\hat{H}}(t)=\hat{H}-\boldsymbol{\omega}(t) \cdot \hat{\mathbf{S}}
$$

- quadratic Hamiltonian for the fluctuations

$$
\tilde{\hat{H}}(t)=h_{Q Q}^{(2)}(t) \frac{\hat{Q}^{2}}{2}+h_{P P}^{(2)}(t) \frac{\hat{P}^{2}}{2}+h_{Q P}^{(2)}(t) \frac{\hat{Q} \hat{P}+\hat{P} \hat{Q}}{2}+\mathcal{O}(1 / \sqrt{N})
$$

- validity before the Ehrenfest time

$$
\Delta_{Q}\left(t_{\mathrm{Ehr}}\right) \sim 1
$$

$S_{A}(t)$ and collective excitations

Entanglement between bosons $\left(q_{A}, p_{A}\right)$ and $\left(q_{B}, p_{B}\right)$
the system is quadratic: $\hat{\rho}_{A}$ is gaussian

$$
\begin{aligned}
G_{A}= & \left(\begin{array}{ll}
G^{q_{A} q_{A}} & G^{q_{A} p_{A}} \\
G^{q_{A} p_{A}} & G^{p_{A} p_{A}}
\end{array}\right) \quad \quad \operatorname{det} G_{A}=\frac{1}{4}+f_{A} f_{B}\left\langle\hat{n}_{\mathrm{exc}}\right\rangle \quad \hat{n}_{\mathrm{exc}}=\frac{\hat{Q}^{2}+\hat{P}^{2}-1}{2} \\
& \text { correlation matrix }
\end{aligned}
$$

$$
S_{A}=2 \sqrt{\operatorname{det} G_{A}} \operatorname{arccoth}\left(2 \sqrt{\operatorname{det} G_{A}}\right)+\frac{1}{2} \log \left(\operatorname{det} G_{A}-\frac{1}{4}\right)
$$

$$
S_{A} \sim \frac{1}{2} \log \left\langle\hat{n}_{\mathrm{exc}}\right\rangle+1+\frac{1}{2} \log f_{A}\left(1-f_{A}\right)
$$

$$
\begin{gathered}
\text { entangled }\left\langle\hat{n}_{\mathrm{exc}}\right\rangle \gg 1 \\
\text { separable states }\left\langle\hat{n}_{\mathrm{exc}}\right\rangle=0 \quad \operatorname{det} G_{A}=\frac{1}{2} \log \left\langle\hat{n}_{\mathrm{exc}}\right\rangle+1+ \\
\hline
\end{gathered}
$$

Relation to semi-classical trajectories

$$
S_{A}(t) \sim 1+\frac{1}{2} \log f_{A} f_{B}+\frac{1}{2} \log \left\langle\hat{n}_{\mathrm{exc}}(t)\right\rangle
$$

Start from the state $\left|\psi_{0}\right\rangle=|\rightarrow \rightarrow \cdots \rightarrow\rangle$ and evolve $H_{\mathrm{LMG}}=-\frac{2 J}{N} \sum_{i \neq j=1}^{N} \hat{s}_{i}^{x} \hat{s}_{j}^{x}-2 h \sum_{i=1}^{N} \hat{s}_{i}^{z}$

Generic quenches

$$
\left\langle\hat{n}_{\mathrm{exc}}(t)\right\rangle \sim t^{2}
$$

$$
S_{A}(t) \sim \log t
$$

Numerical simulations by exact diagonalization

Unstable Trajectory
(b)

$$
\left\langle\hat{n}_{\mathrm{exc}}(t)\right\rangle \sim e^{2 \lambda t}
$$

$$
S_{A}(t) \sim \lambda_{h_{c}} t
$$

Interpretation

connection with spin squeezing

$$
\begin{aligned}
\xi^{2} \equiv & \frac{\operatorname{Min}_{\mathbf{u} \perp \mathbf{Z}}\left\langle(\mathbf{u} \cdot \mathbf{S})^{2}\right\rangle}{N / 4} \\
& =1+2\left\langle\hat{n}_{\mathrm{exc}}\right\rangle-2 \sqrt{\left\langle\hat{n}_{\mathrm{exc}}\right\rangle\left(1+\left\langle\hat{n}_{\mathrm{exc}}\right\rangle\right)}
\end{aligned}
$$

$$
\begin{array}{cc}
\xi^{2} \sim 1 & \sim \frac{1}{N} \\
\left\langle\hat{n}_{\mathrm{exc}}\right\rangle \sim 0 & \sim N
\end{array}
$$

- known witness of many-particle entanglement
- experimentally measurable!
[Bohnet, Sawyer, Britton, ... Bollinger - Science, 2016]
[Muessel, Strobel, Joos, Nicklas, Stroescu... - Science APB, 2013]
[Kitagawa, Ueda - Phys. Rev. A, 1993]
[Wineland, Bollinger, Itano, Heinzen - Phys. Rev. A, 1994] [Sørensen, Mølmer - Phys. Rev. Lett., 2001]
[Sørensen, Duan, Cirac, Zoller - Nature, 2001]
effective temperature

$$
\hat{\rho}_{A, B}=\frac{e^{-\beta_{\mathrm{eff}} \hat{H}_{A, B}}}{Z_{A, B}} \quad \beta_{\mathrm{eff}}=2 \operatorname{arctanh}\left(\frac{1}{\sqrt{1+4 f_{A} f_{B}\left\langle\hat{n}_{\mathrm{exc}}\right\rangle}}\right)
$$

Spatially decaying interactions

$$
\hat{H}=-\frac{J}{\mathcal{N}_{\alpha, N}} \sum_{i \neq j} \frac{\hat{\sigma}_{i}^{x} \hat{\sigma}_{j}^{x}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\alpha}}-h \sum_{i} \hat{\sigma}_{i}^{z}
$$

$$
\text { Kač normalization } \mathcal{N}_{\alpha, N}=\frac{1}{N} \sum_{i \neq j} \frac{1}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{\alpha}} \quad \mathcal{N}_{0, N}=N
$$

(to get a finite dynamical time scale)

Fourier representation:

- Time-dependent Holstein-Primakoff

$$
\begin{array}{r}
k=0 \text { collective mode } \\
\hat{H}=-\frac{1}{N} \sum_{k} \widetilde{J}_{k}(\alpha) \tilde{\sigma}_{k}^{x} \tilde{\sigma}_{-k}^{x}-h \tilde{\sigma}_{k=0}^{z}
\end{array}
$$

spin-wave Hamiltonian
-> Many-body problem!

$$
\sum_{k \neq 0} \widetilde{J}_{k}(\alpha)\left[A_{Q Q} \frac{\tilde{q}_{k} \tilde{q}_{-k}}{2}+A_{P P} \frac{\tilde{p}_{k}+\tilde{p}_{-k}}{2} A_{Q P} \frac{\tilde{q}_{k} \tilde{p}_{-k}+\tilde{p}_{k} \tilde{q}_{-k}}{2}\right]
$$

Suppression of quasiparticle production

$$
\left|\dot{n}_{\mathbf{k} \neq 0}(t)\right|=\left|\left\langle\left[n_{\mathbf{k} \neq \mathbf{0}}, \widetilde{H}(t)\right]\right\rangle\right| \sim \frac{J}{(|\mathbf{k}| L)} d-\alpha
$$

long prethermal regime:

$$
T_{\text {pre-th }}=N^{1-d / \alpha}
$$

- Squeezing-induced entanglement dominates against quasiparticle-induced entanglement
- the system remains trapped within a small portion of the full Hilbert space

Collective squeezing vs Quasiparticle propagation

Numerical simulations by MPS-TDVP (converged with bond dimension $\mathrm{D}=128$)

- Squeezing-induced entanglement dominates against quasiparticle-induced entanglement
- Appreciable (bounded) contribution of long-wavelength quasiparticles

Conclusions

1. analytical understanding of $S_{A}(t)$ beyond the short-range paradigm

- collective spin squeezing gives dominant contribution
- long prethermal regime (nonergodic behavior);
- 'efficiency' of classical simulations: TDVP, CTWA etc

2. connection between $S_{A}(t)$ and spin squeezing

- Entanglement entropy (bound) accessible experimentally
- Quantum Information

Perspectives: entanglement dynamics in collective models

- chaotic semi-classical models

Kicked top $\quad S_{\text {ent }} \sim \lambda_{\text {Lyap }} t$

- multiple collective degrees of freedom (Dicke models etc)

