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Paradigms with short-range interactions:
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• is very hard to measure

Entanglement entropy evolution

⇢̂A(t) = TrB | (t)ih (t)|
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SA(t) = �Tr ⇢̂A(t) log ⇢̂A(t)
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• unveils crucial properties of quantum dynamics and its 
classical simulations (MPS, TDVP)
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which has long been recognized as a witness of many-body
entanglement in collective models [23–27]. By means of
a systematic expansion in quantum fluctuations around
the semiclassical collective spin, we compute the out-of-
equilibrium growth of hn̂exc(t)i after a quench, showing
that it generically leads to the reported logarithmic growth
in time of S(t). We test all our analytical results against
exact numerical computations in the paradigmatic case
of ferromagnetic quantum Ising chains with long-range
interactions, finding that the growth of S(t) is perfectly
reproduced. AL: numerics include alpha, can we
say it is reproduced?

Our findings demonstrate that, in systems with long-
range interactions, the non-equilibrium growth of entan-
glement entropy is primarily governed by the non-linearity
of the collective dynamics. This mechanism provides a
novel paradigm, which should be contrasted to the avail-
able ones for systems with local interactions, namely those
provided by the standard quasi-particle picture for fully
integrable models and by random unitary circuits for fully
chaotic models. AL: add citations

Entanglement entropy in infinite-range spin systems.—
We first consider general spin models with arbitrary all-to-
all multi-body interactions, described by a Hamiltonian
of the form

Ĥ = �
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where ŝi, i = 1, 2, . . . , N are quantum spins-1/2 (or
qubits). The rescaling factor 1/Np�1 ensures that the
energy contribution of all p-body interactions is extensive.
These Hamiltonians can be written in terms of the col-
lective spin of the system, Ŝ =

PN
i=1 ŝi. Its magnitude

|S| =
p
S(S + 1) with S = N/2, N/2� 1, N/2� 2, . . . is

extensive and conserved,
h
|Ŝ|2, Ĥ

i
= 0, and generically

maximal (S = N/2) in the ground state [28], leading to
an effective ~eff s ~/N AL: cite sciolla biroli. Hence,
the behavior of the system in the thermodynamic limit
N ! 1 is described by the classical Hamiltonian Ĥ/N !

Hcl( ~S) = �
P

↵1
J↵1 S

↵1 �
P

↵1,↵2
J↵1↵2 S

↵1S
↵2 � . . .

where now Ŝ/N ! ~S represents a classical spin on the
two-dimensional sphere of radius 1/2. The rigorous mean-
ing of this statement is that, as N ! 1, the ground
state expectation values hŜiGS /N of the spin compo-
nents converge to the minimum point ~S⇤ of the classical
Hamiltonian Hcl on the sphere, with vanishingly small
quantum fluctuations, and their non-equilibrium evolu-
tion hŜ(t)i /N is described by the classical trajectory ~S(t)

on the sphere governed by Hcl, i.e., ~̇S = { ~S,Hcl} with
the Poisson brackets {S

↵
,S

�
} = ✏

↵��
S
� . The dynamical

evolution at finite size N can thus be understood via sys-
tematic semiclassical expansions in quantum fluctuations
around this classical limit.

We aim to understand the entanglement dynamics in
spin systems described by Eq. (1). For a composite sys-
tem with Hilbert space H = HA ⌦ HB in a pure state
⇢̂ = | i h |, the entanglement between subsystems A

and B can be quantified by the Von Neumann entropy
SA = �Tr

⇥
⇢̂A log ⇢̂A

⇤
of the reduced density matrix

⇢̂A = TrB ⇢̂. In this light, we consider a bipartition of
the system described by Eq. (1) into two subsystems
A and B with NA and NB = N � NA spins, respec-
tively. The collective spin Ŝ can be correspondingly de-
composed as Ŝ = ŜA+ ŜB (see Fig. 1). Following Ref. 29
and 30, the quantum correlations between subsystems A

and B can be understood by expanding the two spins
ŜA, ŜB in quantum fluctuations around the direction
Z = (sin ✓ cos�, sin ✓ sin�, cos ✓) of hŜ(t)i by means of
Holstein-Primakoff transformations from spin to canoni-
cal bosonic operators (see, e.g., Ref. 31), expressed by

ŜA,B '

p
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fA,B s q̂A,B +Y

p
fA,B s p̂A,B

⌘

+ Z

✓
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q̂
2
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2
A,B � 1

2

◆
(2)

where s = 1/2 here, fA,B = NA,B/N represent the frac-
tions of spins in the two subsystems, and X, Y form
with Z an orthonormal frame. In this description, the
entanglement between subsystems A and B is encoded
by the entanglement between these two bosonic modes.

In non-equilibrium conditions, typically generated by
preparing the system in the ground state and then varying
in time some parameters J in the Hamiltonian (quantum
quench), both the instantaneous collective spin configu-
ration hŜ(t)i and the transverse quantum fluctuations of
the spins ŜA, ŜB around it, described by the two bosonic
modes (q̂A, p̂A) and (q̂B , p̂B) respectively, evolve in time.
This problem can be approached by letting the Z-axis
follow the evolution of hŜ(t)i, i.e., by moving to a rotating
frame so that the inertial forces cancel the linear terms in
the quantum fluctuations [32, 33]. The resulting quadratic
time-dependent Hamiltonian in the bosonic excitations
(qA, pA) and (qB , pB)

governs the evolution of the transverse quantum fluctu-
ations of ŜA, ŜB around their averages NA

~S(t), NB
~S(t).

This quadratic approximation is rigorously valid as long
as spin fluctuations are subextensive, which is always true
in the ground states [34] and out of equilibrium until the
so-called Ehrenfest time scale, which diverges with the
system size N (see below).

Within this formalism, the Von Neumann entanglement
entropy between the two subsystems A and B is computed
with standard Gaussian bosonic state techniques AL: cite
SM, gaussian [35], obtaining

SA =
p

1 + 4fAfB hn̂exci arccoth
⇣p

1 + 4fAfB hn̂exci
⌘

+
1

2
log

�
fAfB hn̂exci

�
. (3)

A
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Hyperfine levels of ultracold trapped ions:

Quantum experiments in Atomic-Molecular-Optical physics:

[Zhang, Pagano, Hess, … Monroe - Nature, 2017] [Bohnet, Sawyer, Britton, … Bollinger - Science, 2016]

system are the valence electron spin states in the Beþ ion
ground state which, in the 4.46 T magnetic field, are split
by 124 GHz [16,17,36,37]. The interplay of the Coulomb
repulsion and the electromagnetic confining potentials
supports a set of normal vibrational modes of the crystal
[38], which we couple to the spin d.o.f. via a spin-
dependent optical dipole force (ODF), generated by the
interference of a pair of lasers with beat note frequency ωR
[36]. The frequency ωR is detuned from the center-of-mass
(c.m.) mode frequency, ωc:m:, by δ≡ ωR − ωc:m: (Fig. 1).
The detuning is chosen to predominantly excite the c.m.
mode which uniformly couples all the ions in the crystal
[16]. In the presence of an additional transverse field,

generated by resonant microwaves, we implement the
Dicke Hamiltonian [39–41]

ĤDicke=ℏ ¼ −
g0ffiffiffiffi
N

p ðâþ â†ÞŜz þ BðtÞŜx − δâ†â: ð1Þ

in the frame rotating with ωR. The operator âðâ†Þ is the
bosonic annihilation (creation) operator for the c.m. mode,
BðtÞ is the time-varying strength of the applied transverse
field, and g0 represents the homogeneous coupling between
each ion and the c.m. mode. Here, δ < 0. We have
introduced the collective spin operators Ŝα ¼ ð1=2Þ

P
jσ̂

α
j

where σ̂αj is the corresponding Pauli matrix for α ¼ x, y, z
which acts on the jth ion.
The Dicke Hamiltonian exhibits a quantum phase

transition at Bc ¼ g20=jδj in the thermodynamic limit,
i.e., N → ∞, [42–44], separating the normal (B > Bc)
and superradiant (B < Bc) phases. The Hamiltonian
remains unchanged under the simultaneous transformations
Ŝx → Ŝx, Ŝz → −Ŝz, Ŝy → −Ŝy, and â → −â. These are
generated by the parity operator Π̂ ¼ eiπ½â

†âþŜxþðN=2Þ&.
In the strong-field regime of the normal phase, B ≫ Bc,

the spins and phonons decouple into a product state. When
jBj > jδj the corresponding ground state, jψNor

0;N=2i, and low
lying excitations, jψNor

n¼1;2;…i, are jψNor
n;N=2i¼ jni⊗ j−N=2ix.

We use jni to denote Fock states and jMiα¼fx;y;zg to denote
the fully symmetric (S ¼ N=2) eigenstates which satisfy
ŜαjMiα ¼ MjMiα with −N=2 ≤M ≤N=2.
In the weak-field limit, B ≪ Bc, of the superradiant

phase, the spin and phonon d.o.f. are entangled and the
ground state becomes degenerate in the thermodynamic
limit. For a finite system, it approaches jψS

0;N=2i¼
ð1=

ffiffiffi
2

p
Þðjα0;0i⊗ jN=2iz' j−α0;0i⊗ j−N=2izÞ as B→0,

where we have introduced the displaced Fock states
jα; ni≡ D̂ðαÞjni with D̂ðαÞ ¼ eαâ

†−α(â the associated dis-
placement operator [45]. Here, the sign of the superposition
is dictated by the parity symmetry: for even N, the
ground state will be the symmetric superposition with
heiπ½â†âþŜxþðN=2Þ&i ¼ 1, while for odd N, the ground state is
the antisymmetric superposition with heiπ½â†âþŜxþðN=2Þ&i ¼
−1. In this weak-field regime, the spins exhibit ferromag-
netic order, characterized by the nonzero value of the
order parameter jŜzj, while the phonon mode acquires a
macroscopic expectation value equal to jα0j2, where
α0 ¼ g0

ffiffiffiffi
N

p
=ð2δÞ. The low-lying excitations correspond

to displaced Fock states, jψS
n>0;N=2i, if δ2 < g20 and to spin-

flips along ẑ, jψS
0;M<N=2i, if δ2 > g20.

Slow quench dynamics.—At the start of the experimental
sequence (see Fig. 1), we prepare the initial spin state
j−N=2ix with the aid of a resonant microwave pulse.
Doppler-limited cooling of the phonon d.o.f. leads to an
initial transverse phonon thermal state with mean

(a)

(b)

FIG. 1. Implementation and dynamical protocol. (a) The Dicke
model is engineered with a Penning trap ion crystal of N ∼70
ions by applying an optical dipole force, resonant only with the
center of mass mode (which generates spin-phonon interactions)
and resonant microwaves (which generate the transverse field).
The system is initially prepared in the normal phase where all the
spins point along the transverse field and are decoupled from the
phonons. (b) As the transverse field is slowly turned off [using
linear or exponential ramp (shown here) profiles with ramp time
τramp] the infinite system enters the superradiant phase after
crossing the quantum critical point at BðtcritÞ ¼ Bc where the gap
closes. The superradiant phase with macroscopic phonon pop-
ulation, ferromagnetically aligned spins and large spin-phonon
entanglement is described by the order parameter hðâþ â†ÞŜzi,
which is tracked closely by the rescaled spin observable
jα0jhjŜzji. (c) In the perfectly adiabatic regime, the ground state
evolves from a separable spin-paramagnetic and vacuum photon
Fock state into a macroscopic spin-phonon cat state: a super-
position of two opposite spin aligned and displaced-coherent
phonon states (with the sign of the superposition dictated by a
parity symmetry, see Supplemental Material [35]).
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Classical physics:

Long-range interactions
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(galaxies, plasmas, ionic crystals,…)

N.B. interactions are practically instantaneous!



Correlation spreading with long-range interactions

[Hauke, Tagliacozzo, Eisert, Lewenstein, Kastner, Gorshkov, Carleo-Cevolani,  Wouters, Essler, Daley, Rey, Roscilde, Pupillo, Trombettoni, nakamura, Nayak, Yao,…]

Typical behavior of spatiotemporal correlations: 
(from Lepori, Trombettoni, Vodola, JStat ’17)

Fast buildup of  
long-distance correlations

Violations of linear  
light-cone spreading 



Entanglement growth with long-range interactions
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increase (small error) breaks down at !! 1. For smaller
systems, boundary effects and finite-size effects become
significant, and the linear regime breaks down at larger !.
Note that the change in behavior for large systems at !! 1
can, in a sense, be understood since this marks the point at
which, in the thermodynamic limit, the sum in the interac-
tion term in the Hamiltonian begins to diverge with in-
creasing system size.

We can also identify the regime of linear growth of SvN
by looking at the mutual information between distant spins.
In the upper panel of Fig. 3(d), we plot the time evolution
of the mutual information I1;8, between sites 1 and 8, for
1 " ! " 2 in a system of 20 spins and for B ¼ !J. As a
clear signature of the regime of linear growth of the half-
chain entropy, we find that the mutual information remains
nearly zero for a certain time until it suddenly peaks at a
time corresponding to the arrival of an ‘‘entangling’’ qua-
siparticle pair originally produced on a site between the
two spins. For nearest-neighbor interactions, this arrival
time is consistent with the analytically calculated
Lieb-Robinson velocity (cf. Appendix B), and we find
that the same mechanism still holds for rather long-ranged
interactions of !! 2. In contrast, for the regime of loga-
rithmic growth of SvN, we find a markedly different be-
havior [lower panel of Fig. 3(d)], which is discussed in the
next section.

We emphasize that the fact that the entanglement growth
mechanism is directly reflected in the time dependence of
the mutual information between two distant spins is very
important for experimental observations. Instead of having
to reconstruct 2ðM=2Þ & 2ðM=2Þ density-matrix elements of a
large block via quantum-state tomography, the growth

behavior of the half-chain entropy can be directly verified
by measuring only 4 & 4 density matrices for a system of
two composite spins. In Sec. IVB, we will show how the
measurement further simplifies for the particular quench
we consider here.

B. Entanglement dynamics for long-range interactions

In this section, we study the entanglement growth for
very long-range interactions with ! " 1. In this regime,
the picture of entangling quasiparticles that move freely
within a light cone breaks down, and instead distant parts
of the system can become almost instantaneously en-
tangled based on direct interactions. We observe that for
!! 0:8, 0.9, 1, the half-chain entropy can still increase
steadily as a function of time for our quench, but that the
increase becomes logarithmic instead of linear. When fur-
ther increasing the range of interactions for ! & 0:2, we
find a regime where SvN oscillates rapidly around small
values. We understand this behavior via an effective model
in a basis of Dicke states [48] for infinite-range interactions
! ¼ 0.

1. Logarithmic entropy growth

When increasing the range of interactions, eventually
the linear growth of SvN breaks down, and the growth
becomes logarithmic, as shown in Fig. 3(b). For very
long-range interactions, the time scale of the dynamics is
dominated by the interaction-energy term in the
Hamiltonian. Thus, to make a valid comparison, it is
favorable to measure the time in inverse units of the matrix
norm instead of !J. For Hamiltonian (1), we can calculate

(a) (b) (c)

FIG. 3. Entanglement growth after a quantum quench in the transverse Ising model in which algebraically decaying interactions are
introduced suddenly. (a) Time evolution of the half-chain entropy after the quench for B ¼ 1 and varying decay exponents ! ¼ 1:5, 2,
2.5, 3, and 1 (from bottom to top). Solid lines are ED results for M ¼ 20 spins; dashed lines are MPS/MPO results for 50 spins
(converged with MPS bond dimension D ¼ 192). For ! ' 2, the growth is clearly linear and independent of the system size. (b) Time
evolution of 2SvN . Each of the three bundles of lines contains the results for M ¼ 30, 40, and 50 spins and ! ¼ 0:8, 0.9, and 1 (MPS/
MPO simulation, converged with D ¼ 192). On top of the oscillations, the growth is logarithmic (straight line on the exponential
scale). Time is given in units of the inverse Hamiltonian norm, "" (cf. Sec. III B 1). (c) Finite-size scaling of the crossover from linear
SvN growth to a logarithmic one visualized by the error of a linear fit, #fit, in the interval 1< t !J < 3 as a function of ! and M (B ¼ 1,
ED and MPS/MPO simulations, D ¼ 192). For large systems, the crossover occurs around !! 1. (d) Time evolution of the mutual
information between spins 1 and 8, I1;8 (M ¼ 20, B ¼ !J, ED). The upper panel shows results for 2 ' ! ' 1, the lower panel for
1 ' ! ' 0:2. The signature of linear growth of the half-chain entropy is the arrival of a quasiparticle peak after a certain time, whereas
for ! & 1, distant spins become entangled instantaneously.
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[Buyskikh, Fagotti, Schachenmayer, Essler, Daley - Phys. Rev. A, 2016]

well described by the propagation of quasiparticles at a rate
equal to or slower than the Lieb-Robinson bound [42–44].
This leads to a linear increase in bipartite entanglement in
time, so that the dynamics cannot be efficiently computed
in existing classical simulations beyond short times
[16,17]. Interestingly, in this limit, we find that the maxi-
mum growth rate of bipartite entanglement, even in small
systems, occurs when we quench the interaction strength to
the value corresponding to the quantum-phase-transition
point, shifting accordingly for varying !.

For interactions with ! & 1, we observe qualitatively
different behavior. Counterintuitively, quenches above the
critical point for these long-range interactions lead only to
a logarithmic increase of bipartite entanglement in time, so
that in this regime, long-range interactions produce a
slower growth of entanglement than short-range interac-
tions. This can be understood by the fact that the dynamics
is constrained to take place in a small part of the total
available Hilbert space. In particular, in the case of infinite-
range interactions, the system is described by the Lipkin-
Meshkov-Glick (LMG) Hamiltonian [45,46], where the
eigenspace of the model is spanned by relatively few
Dicke states. We show that, in this case, the bipartite
entanglement is bounded by a constant value, which grows
logarithmically with the size of the system. For a large
system size, this can be thought of as a mean-field limit,
where the dynamics is simple to capture with a small
number of basis states.

Finally, we discuss specific experimental parameters for
the realization of different regimes in ion traps with finite
chain lengths, and experimental measurement protocols for
these effects, creating possibilities for the regimes consid-
ered here to be observed in the laboratory. We show that the

crossover from linear to logarithmic entanglement growth
can be observed also for inhomogeneously decaying inter-
actions. Furthermore, we take typical experimental noise
sources into account and show that the observable features
are robust against these. The result that long-range inter-
actions do not always give rise to strong entanglement in
quench dynamics has implications for the realization of
large-scale entanglement in quantum simulations in gen-
eral systems with long-range interactions.
This paper is organized as follows. In Sec. II, we in-

troduce the setup and the model, as well as the entangle-
ment measures we compute. In Sec. III, we show how the
entanglement growth depends on the model parameters
and how the entanglement distribution mechanisms can
be understood. In Sec. IV, we show entanglement growth
for typical experimental parameters with inhomogeneously
decaying interactions and how the entanglement behavior
can be measured in noisy experiments. Finally, in Sec. V,
we provide a conclusion and an outlook.

II. MODEL FOR A QUENCH WITH LONG-RANGE
INTERACTIONS

In this paper, we study the nonequilibrium dynamics of
spatial entanglement in systems with long-range interac-
tions, especially as they are realizable with variable range
in ion traps. In this section, we introduce the long-range
transverse Ising model governing the time evolution, and
the measures of entanglement we compute.

A. Transverse Ising model

We consider the transverse Ising model with long-range
interactions, described by the Hamiltonian

Ĥ ¼
X

i<j

Ji;j"̂
x
i "̂

x
j þ B

X

i

"̂z
i : (1)

Here, the "̂!
i denote the local Pauli matrices (! ¼ x, z), Ji;j

is a general interaction matrix with potentially long-range
interactions, and B is the transverse field. This Hamiltonian
can be realized experimentally, e.g., with a string of
trapped ions that are harmonically confined in a linear
trap, as depicted in Fig. 1. Using two stable (or metastable)
electronic states of these ions as local spin representations
at site i, j "ii and j #ii, it has been shown [23] that one can
use collective couplings of these local states to motional
degrees of freedom of the whole chain to produce the
effective spin model (1) [an example of Ji;j for the ion-
trap experiment, ‘‘case B’’ of Sec. IV, is shown in
Figs. 1(b) and 1(c)]. Note that, throughout this paper, we
will deal with open boundary conditions, which are typical
in ion-chain experiments.
We define the local eigenstates of "̂z

i as j0ii # j #ii and
j1ii # j "ii, with eigenvalues $1 and 1, respectively. We
consider a quench experiment [see Fig. 1(a)], where the
system starts in the fully polarized state jc 0i ¼

QM
i j0ii,

(b)

FIG. 1. (a) Illustration of the quench experiment. We consider
a linear chain of ions (effective spin model) with long-range
interactions. Initially, all spins are fully polarized along the axis
of the magnetic field B. After a time evolution, spatial entangle-
ment entropy (SvN) builds up between blocks of the system.
(b) A typical calculated experimental interaction matrix for 20
ions (see text for further details and parameters). (c) The decay
of the interactions with a tunable decay exponent !. Here, the
grey dots show the mean interactions from diagram (b).
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Collective dynamics

• Collective spin               

• is extensive and conserved               

• Hamiltonian 
˜̂
H0(t)
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explore all the allowed Hilbert space, and their entan-
glement is upper-bounded by SA  log (dimHA). For
generic many-body systems, the dimension of HA is ex-
ponentially large with the volume of the subsystem [e.g.
dim(HA) = 2NA for spins-1/2], causing volume-law scal-
ing. In collective models under consideration here, how-
ever, the conservation of the collective spin magnitude (8)
reduces the dimension of the allowed Hilbert space to
dim(HA) = NA + 1.

V. COMPARISON WITH NUMERICS FOR THE
LIPKIN-MESHKOV-GLICK MODEL

In this Section, we apply the general scheme and results
found in Secs. III and IV for the entanglement entropy
growth to a paradigmatic quantum spin model, namely
the transverse-field Ising ferromagnet. Its infinite-range
version

HLMG = � 2J

N

NX

i 6=j=1

ŝ
x
i ŝ

x
j � 2h

NX

i=1

ŝ
z
i , (46)

is widely known in the literature as the Lipkin-Meshkov-
Glick model96 and it corresponds to the general Hamil-
tonian (6) with one-body terms Jz ⌘ h and two-body
interactions Jxx ⌘ J > 0. Factors are chosen in such a
way as to match the usual conventions on the LMG model
in terms of Pauli matrices. For large values of the trans-
verse field |h| > J the system is paramagnetic, with a
single equilibrium configuration of the spins aligned with
the field direction, and the non-equilibrium dynamics is
a precession around it. A quantum phase transition at
h = ±J separates this phase from a ferromagnetic one,
with a pair of ground states with spin orientation in the x-
z plane, symmetric with respect to flipping the x axis. The
out-of-equilibrium behavior has been widely studied97–99

and, in the case of a quantum quench, it is characterized
by the well-known phenomenon of dynamical phase tran-
sitions (DPT)26. The non-equilibrium trajectories of the
system may have paramagnetic or ferromagnetic charac-
ter depending on the initial state. The two families are
distinguished by the time-averaged magnetization Sx(t)
being vanishing or not, and are separated by a critical
trajectory (separatrix) with a diverging period, see Fig. 3
for an illustration.

The ground state entanglement entropy of the LMG
model has been studied in Refs. 86 and 100, where it is
found to be finite away from the quantum critical point
and logarithmically divergent with the system size in
correspondence of it. More recently, its growth in time
after a quench of the transverse field has been numerically
found to be consistent with a logarithmic behavior46,47.
In the following, using the general theory developed in
the previous Sections, we explicitly trace back this slow
dynamics of the entanglement entropy to the growth of
the collective quantum fluctuations.

The non-equilibrium evolution governed by the Hamil-
tonian (46) has been studied with the dynamical approach

(b)
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Figure 3. Illustration of possible instances of non-equilibrium
dynamics in the LMG model on the Bloch sphere of the collec-
tive spin. An initial fully polarized state at t = 0 is pictorially
represented as a point on the Bloch sphere, surrounded by a
small grey circle represented its transverse quantum fluctua-
tions. Time-evolution governed by Eq. (46) is characterized by
ferromagnetic (green) or paramagnetic (blue) periodic trajec-
tories, with Sx(t) 6= 0 and Sx(t) = 0, respectively, separated
by the unstable trajectory (red). For the quenches from h = 0
considered in Figs. 4, 5, these cases are realized for hf < hc,
hf > hc and hf = hc, respectively. Labels (a) and (b) re-
fer to two possible such initial states, a generic one (a) (i.e.,
non-critical), and a critical one (b). Quantum fluctuations
of the collective spin in these two initial states show quali-
tatively different behavior of spin-squeezing, as discussed in
Sec. IV, see Fig. 2. (a) Initial condition corresponding to a
regular quench: periodic orbits separate linearly in time and
the collective excitations grow as t2. (b) Initial condition at a
dynamical critical point: nearby orbits separate exponentially
fast in time. Compare with (a) and (b) in Fig. 2, respectively.

of Sec. III B in Refs. 24, 74, and 89. The expansion (19)
of the Hamiltonian in the rotating frame via Eqs. (26)
and (27) in this case reads

eEcl = �h cos ✓ � 1

2
cos ✓�̇� J

2
sin2 ✓ cos2 � , (47a)

eh(1)
Q = h sin ✓ +

1

2
sin ✓ �̇� J cos ✓ sin ✓ cos2 � , (47b)

eh(1)
P = �1

2
✓̇ + J sin ✓ sin� cos� , (47c)

eh(2)
QQ = J sin2 ✓ cos2 � , (47d)

eh(2)
PP = J cos 2� , (47e)

eh(2)
QP = J cos ✓ sin� cos� , (47f)

eh(2)
sw = J cos2 � . (47g)

By setting to zero the linear terms eh(1), the classical
equations of motion101 are obtained

(
✓̇ = 2J sin ✓ cos� sin�

�̇ = �2h+ 2J cos ✓ cos2 � ,

(48)

while the dynamical correlations of collective spin fluctu-

NB = fBN
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<latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit>N

<latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit>

+
<latexit sha1_base64="5SGvRg2AmYJBD31I5OmirFji9+8=">AAAB83icbVDLSsNAFJ3UV62vqks3g0UQhJKooMuiG5ct2Ae0oUymt3XoZBJm7ggl9Avc6sqduPWDXPgvJjELbT2rwzn3cs89QSyFQdf9dEorq2vrG+XNytb2zu5edf+gYyKrObR5JCPdC5gBKRS0UaCEXqyBhYGEbjC9zfzuI2gjInWPsxj8kE2UGAvOMJVaZ8Nqza27Oegy8QpSIwWaw+rXYBRxG4JCLpkxfc+N0U+YRsElzCsDayBmfMom0E+pYiEYP8mDzumJNQwjGoOmQtJchN8bCQuNmYVBOhkyfDCLXib+5/Utjq/9RKjYIiieHUIhIT9kuBZpA0BHQgMiy5IDFYpyphkiaEEZ56lo00oqaR/e4vfLpHNe9y7qbuuy1rgpmimTI3JMTolHrkiD3JEmaRNOgDyRZ/LiWOfVeXPef0ZLTrFzSP7A+fgGDzCRNg==</latexit>

NA
<latexit sha1_base64="3xVZBslJb0DdfFZfak3uCVMB5nY=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8bWYBYY+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXlxUTNVqnSlV3urq8SEmDjL1ZC4tLyyurmbXs+sbm1nZuZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwTKSri95JL5dntuOycplRZpcKBdc9TkjFLRRZkTo2S5Enc9R6ufdOPxSxDwEKxY1pOyzC7oRrlELBNNuJDURcjPgQ2gkNuA+mO0mjTulhbDiGNAJNpaKpCN83Jtw3Zux7yaTP8cb89mbiX147xoHbncggihECMTuEUkF6yAgtkw6A9qUGRD5LDlQGVHDNEUFLyoVIxDgpJZv08fU0/Z80CrZTtNllKV89nTeTIfvkgBwRh1RIlZyTGqkTQYbknjyQR+vOerKerZfP0QVrvrNHfsB6/QD2yJJW</latexit>

NB
<latexit sha1_base64="EFIIIQiYmnqg8h9ie6O5rLdqNwI=">AAAB9XicdVDLSgNBEJyNrxhfUY9eBoPgaZnNg+QY4sWTRDQPSJYwO+nEIbMPZnqVEPIJXvXkTbz6PR78FzdrBBWtU1HVTVeXFylpkLE3K7Oyura+kd3MbW3v7O7l9w/aJoy1gJYIVai7HjegZAAtlKigG2ngvqeg403OFn7nFrSRYXCN0whcn48DOZKCYyJdXQwag3yB2dVa2SkVKbNLlQqrVBPCKkWnXKOOzVIUyBLNQf69PwxF7EOAQnFjeg6L0J1xjVIomOf6sYGIiwkfQy+hAffBuLM06pyexIZjSCPQVCqaivB9Y8Z9Y6a+l0z6HG/Mb28h/uX1YhzV3JkMohghEItDKBWkh4zQMukA6FBqQOSL5EBlQAXXHBG0pFyIRIyTUnJJH19P0/9Ju2g7JZtdlgv1xrKZLDkix+SUOKRK6uScNEmLCDIm9+SBPFp31pP1bL18jmas5c4h+QHr9QP0EJJU</latexit>

=<latexit sha1_base64="4SWzZAeGd6ZGXJa2AtF/DlTPacc=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrIBCRqkCBrKRCIPKbGi82UTTjmfrbs9pMjKF9BCRYdo+SAK/gXbuICEqUYzu9rZCWIpDLrup1NaWV1b3yhvVra2d3b3qvsHHRNZzaHNIxnpXsAMSKGgjQIl9GINLAwkdIPpbeZ3H0EbEal7nMXgh2yixFhwhqnUuh5Wa27dzUGXiVeQGinQHFa/BqOI2xAUcsmM6XtujH7CNAouYV4ZWAMx41M2gX5KFQvB+EkedE5PrGEY0Rg0FZLmIvzeSFhozCwM0smQ4YNZ9DLxP69vcXzlJ0LFFkHx7BAKCfkhw7VIGwA6EhoQWZYcqFCUM80QQQvKOE9Fm1ZSSfvwFr9fJp2zunded1sXtcZN0UyZHJFjcko8ckka5I40SZtwAuSJPJMXxzqvzpvz/jNacoqdQ/IHzsc3Kz6RSA==</latexit>

Q
<latexit sha1_base64="3Duo8oTSidvQVElLBoDW8zeIWDc=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQ5lI5CElVrS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDMKhkhC2SpLCbaIQwUNgJJreZ33lEbWQc3dM0QT+EcSRHUgClUrM5qFTdmpuDLxOvIFVWoDGofPWHsbAhRiQUGNPz3IT8GWiSQuG83LcGExATGGMvpRGEaPxZHnTOT60BinmCmkvFcxF/b8wgNGYaBulkCPRgFr1M/M/rWRpd+zMZJZYwEtkhkgrzQ0ZomTaAfCg1EkGWHLmMuAANRKglByFS0aaVlNM+vMXvl0n7vOZd1NzmZbV+UzRTYsfshJ0xj12xOrtjDdZigiF7Ys/sxbHOq/PmvP+MrjjFzhH7A+fjG0pqkVw=</latexit>

P
<latexit sha1_base64="77Y7p7pshV2kTooqUyjLEmcmvMw=">AAAB83icbVC7TgMxEPSFVwivACWNRYREFd0BEpQRNJSJRB5SckI+ZxOs+Hwne40UnfIFtFDRIVo+iIJ/wXekgISpRjOz2t2JUikM+v6nV1pZXVvfKG9WtrZ3dveq+wcdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o8lN7ncfQRuRqDucphDGbKzESHCGTmo176s1v+4XoMskmJMamcPlvwbDhNsYFHLJjOkHfophxjQKLmFWGVgDKeMTNoa+o4rFYMKsOHRGT6xhmNAUNBWSFiL8nshYbMw0jlwyZvhgFr1c/M/rWxxdhZlQqUVQPF+EQkKxyHAtXANAh0IDIssvByoU5UwzRNCCMs6daF0lFddHsPj9Mumc1YPzut+6qDWu582UyRE5JqckIJekQW5Jk7QJJ0CeyDN58az36r157z/RkjefOSR/4H18A0jbkVs=</latexit>

• EX: 

pB
<latexit sha1_base64="yRV6Ais0J0FCLMJH7b0E//dEJ5M=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJll5eGN4MUjRnkkQMjs0ODE2UdmejWE8Ale9eTNePV7PPgv7iImarROlarudHV5kZIGGXuzMkvLK6tr2fXcxubW9k5+d69lwlgLaIpQhbrjcQNKBtBEiQo6kQbuewra3s1Z6rdvQRsZBlc4iaDv83EgR1JwTKTLaFAf5AvMrlRdlxUps91SuVx1E8JKrnPKqGOzOQpkgcYg/94bhiL2IUChuDFdh0XYn3KNUiiY5XqxgYiLGz6GbkID7oPpT+dRZ/QoNhxDGoGmUtG5CN83ptw3ZuJ7yaTP8dr89lLxL68b46jan8ogihECkR5CqWB+yAgtkw6ADqUGRJ4mByoDKrjmiKAl5UIkYpyUkkv6+Hqa/k9aRdtxbXZxUqjVF81kyQE5JMfEIRVSI+ekQZpEkDG5Jw/k0bqznqxn6+VzNGMtdvbJD1ivHyxvkng=</latexit>

qB
<latexit sha1_base64="9UZC0VbkL4Ee84qBCNYLdt1aayU=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtJll5eGN4MUjRnkkQMjs0OCE2YczvRpC+ASvevJmvPo9HvwXF8REjdapUtWdri4vUtIgY29Waml5ZXUtvZ7Z2Nza3snu7jVMGGsBdRGqULc8bkDJAOooUUEr0sB9T0HTG53N/OYtaCPD4ArHEXR9PgzkQAqOiXR506v2sjlml8quy/KU2W6hWCy7CWEF1zll1LHZHDmyQK2Xfe/0QxH7EKBQ3Ji2wyLsTrhGKRRMM53YQMTFiA+hndCA+2C6k3nUKT2KDceQRqCpVHQuwveNCfeNGfteMulzvDa/vZn4l9eOcVDuTmQQxQiBmB1CqWB+yAgtkw6A9qUGRD5LDlQGVHDNEUFLyoVIxDgpJZP08fU0/Z808rbj2uziJFepLppJkwNySI6JQ0qkQs5JjdSJIENyTx7Io3VnPVnP1svnaMpa7OyTH7BePwAuAJJ5</latexit>

qA
<latexit sha1_base64="9USBkeKphWlBTsve62jeXAqkJ/8=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8bXYBFW6oF48Y5ZHAhswODU6YfTjTqyGET/CqJ2/Gq9/jwX9xWDFRo3WqVHWnq8uPpdDoOG/W3PzC4tJyZiW7ura+sZnb2m7oKFEc6jySkWr5TIMUIdRRoIRWrIAFvoSmPzyb+s1bUFpE4RWOYvACNghFX3CGRrq86Z50c3nHdg8LlZJLHbvkVo6csiHlQtFo1LWdFHkyQ62be+/0Ip4EECKXTOu268TojZlCwSVMsp1EQ8z4kA2gbWjIAtDeOI06ofuJZhjRGBQVkqYifN8Ys0DrUeCbyYDhtf7tTcW/vHaC/bI3FmGcIIR8egiFhPSQ5kqYDoD2hAJENk0OVISUM8UQQQnKODdiYkrJmj6+nqb/k0bBdou2c1HKV09nzWTILtkjB8Qlx6RKzkmN1AknA3JPHsijdWc9Wc/Wy+fonDXb2SE/YL1+ADZYkn8=</latexit>

pA
<latexit sha1_base64="X4YXNnC5EwXEFuDGITN1FyRZF2s=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxtNkFVLihXjxilEcCGzI7NDhh9pGZXg0hfIJXPXkzXv0eD/6Ls4iJGq1Tpao7XV1+LIVGx3mzMguLS8sr2dXc2vrG5lZ+e6epo0RxaPBIRqrtMw1ShNBAgRLasQIW+BJa/ug89Vu3oLSIwmscx+AFbBiKgeAMjXQV9057+YJju0fFatmljl12q8dOxZBKsWQ06trODAUyR72Xf+/2I54EECKXTOuO68ToTZhCwSVMc91EQ8z4iA2hY2jIAtDeZBZ1Sg8SzTCiMSgqJJ2J8H1jwgKtx4FvJgOGN/q3l4p/eZ0EBxVvIsI4QQh5egiFhNkhzZUwHQDtCwWILE0OVISUM8UQQQnKODdiYkrJmT6+nqb/k2bRdku2c1ku1M7mzWTJHtknh8QlJ6RGLkidNAgnQ3JPHsijdWc9Wc/Wy+doxprv7JIfsF4/ADTHkn4=</latexit>

Ŝ =
NX

i=1

ŝi
<latexit sha1_base64="MCVWr5qbdT/VjWsIF1pqJ5uhyfc=">AAACJ3icbVC7TsNAEDyHVwivACXNiQiJKrIJEjSREDRUKAgSkOJgrY8NOeX80N0aCVn+ED6Br6CFig5BQcGfYIcUBJhqNLOrnR0/VtKQbb9bpanpmdm58nxlYXFpeaW6utYxUaIFtkWkIn3pg0ElQ2yTJIWXsUYIfIUX/vCo8C9uURsZhed0F2MvgJtQ9qUAyiWv2uDuACh1A6CB30/PsqzJXZMEXiqbTnZ1wid9k2We9Ko1u26PwP8SZ0xqbIyWV/1wryORBBiSUGBM17Fj6qWgSQqFWcVNDMYghnCD3ZyGEKDppaPnMr6VGKCIx6i5VHwk4s+NFAJj7gI/nyxCmt9eIf7ndRPq7/dSGcYJYSiKQyQVjg4ZoWXeGvJrqZEIiuTIZcgFaCBCLTkIkYtJXmMl78P5/f1f0tmpO426fbpbOzgcN1NmG2yTbTOH7bEDdsxarM0Eu2eP7Ik9Ww/Wi/VqvX2PlqzxzjqbgPX5BdVWprQ=</latexit>

• ground states S = N/2
<latexit sha1_base64="CJ2SZt3Ef3otcExe4aRaKBBh2nU=">AAAB+XicdVDLSgNBEJz1GeMr6tHLYBA8xd1N1OQgBL14kojmAUkIs5NOHDL7YKZXCEs+wquevIlXv8aD/+JsjKCidSqquunq8iIpNNr2mzU3v7C4tJxZya6urW9s5ra2GzqMFYc6D2WoWh7TIEUAdRQooRUpYL4noemNzlO/eQdKizC4wXEEXZ8NAzEQnKGRmtf0lF4eur1c3i7YxYrrHFNDKiXHKRviFo/cSok6BXuKPJmh1su9d/ohj30IkEumdduxI+wmTKHgEibZTqwhYnzEhtA2NGA+6G4yjTuh+7FmGNIIFBWSTkX4vpEwX+ux75lJn+Gt/u2l4l9eO8ZBuZuIIIoRAp4eQiFhekhzJUwPQPtCASJLkwMVAeVMMURQgjLOjRibYrKmj6+n6f+k4RacYsG+KuWrZ7NmMmSX7JED4pATUiUXpEbqhJMRuScP5NFKrCfr2Xr5HJ2zZjs75Aes1w9qRpML</latexit>

↵ = 0
<latexit sha1_base64="GYcK/qOnc6kQIyIxOz38eXUIA2I=">AAAB+3icbVC7TsNAEDyHVwivACXNiQiJKrIBCRqkCBrKIJEHSqxofdkkp5wfulsjRVa+ghYqOkTLx1DwL9jGBQSmGs3samfHi5Q0ZNsfVmlpeWV1rbxe2djc2t6p7u61TRhrgS0RqlB3PTCoZIAtkqSwG2kE31PY8abXmd95QG1kGNzRLELXh3EgR1IApdJ9H1Q0AX5pD6o1u27n4H+JU5AaK9AcVD/7w1DEPgYkFBjTc+yI3AQ0SaFwXunHBiMQUxhjL6UB+GjcJA8850exAQp5hJpLxXMRf24k4Bsz87100geamEUvE//zejGNLtxEBlFMGIjsEEmF+SEjtEybQD6UGokgS45cBlyABiLUkoMQqRin1VTSPpzF7/+S9kndOa3bt2e1xlXRTJkdsEN2zBx2zhrshjVZiwnms0f2xJ6tufVivVpv36Mlq9jZZ79gvX8BlCaUSg==</latexit>

[Vidal, Dusuel, Barthel - JSTAT, 2007]
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Dynamics: time-dependent Holstein-Primakoff 

Z(t)
<latexit sha1_base64="oYxwNlhabbyMDOUs1MvJFyQIbGY=">AAAB/XicbVC7TsNAEDyHVwivACXNiQgpNJENSFBG0FAGiTyEY0Xnyyaccj5bd2ukyIr4Clqo6BAt30LBv2AbF5Aw1WhmVzs7fiSFQdv+tEpLyyura+X1ysbm1vZOdXevY8JYc2jzUIa65zMDUihoo0AJvUgDC3wJXX9ylfndB9BGhOoWpxF4ARsrMRKcYSq5fT+Uw+RuVsfjQbVmN+wcdJE4BamRAq1B9as/DHkcgEIumTGuY0foJUyj4BJmlX5sIGJ8wsbgplSxAIyX5JFn9Cg2DEMagaZC0lyE3xsJC4yZBn46GTC8N/NeJv7nuTGOLrxEqChGUDw7hEJCfshwLdIugA6FBkSWJQcqFOVMM0TQgjLOUzFOy6mkfTjz3y+SzknDOW3YN2e15mXRTJkckENSJw45J01yTVqkTTgJyRN5Ji/Wo/VqvVnvP6Mlq9jZJ39gfXwDr0iVgw==</latexit>

Work in a reference frame following the classical spin

ê
H(t) = Ĥ � !(t) · Ŝ

<latexit sha1_base64="RxewVyrN1FKEjgYJcHgSpoKYAeQ="></latexit>

• quadratic Hamiltonian for the fluctuations 

• Holstein-Primakoff: treat the spins as free bosons

(Q̂, P̂ )
<latexit sha1_base64="q1PDkAgKYPhtjFnJQmVZEQNY2tw=">AAACBHicbVC7SgNREL3rM8bXqqXNxSBEkLCrgpZBG8sEzAOSEGZvJskldx/cOxsIIa1fYauVndj6Hxb+i7trCk08zRzOmWFmjhcpachxPq2V1bX1jc3cVn57Z3dv3z44rJsw1gJrIlShbnpgUMkAayRJYTPSCL6nsOGN7lK/MUZtZBg80CTCjg+DQPalAEqkrm0X20MgXj3nWa2cde2CU3Iy8GXizkmBzVHp2l/tXihiHwMSCoxpuU5EnSlokkLhLN+ODUYgRjDAVkID8NF0ptnlM34aG6CQR6i5VDwT8ffEFHxjJr6XdPpAQ7PopeJ/Xium/k1nKoMoJgxEuoikwmyREVomkSDvSY1EkF6OXAZcgAYi1JKDEIkYJxnlkzzcxe+XSf2i5F6WnOpVoXw7TybHjtkJKzKXXbMyu2cVVmOCjdkTe2Yv1qP1ar1Z7z+tK9Z85oj9gfXxDeMnloI=</latexit>

(q̂A, p̂A)
<latexit sha1_base64="sfL1DzkI5LlNM9XKV21XdB/cMec=">AAACCXicdVDLSgNBEJz1bXxFxZOXwSAoyDKb+Nijj4tHBaNCEpbesdUhsw9negVZ/AK/wquevIlXv8KD/+JmjaCidSqquunqClOtLAnx5gwMDg2PjI6NVyYmp6ZnqrNzxzbJjMSmTHRiTkOwqFWMTVKk8TQ1CFGo8STs7vX8k2s0ViXxEd2k2IngIlbnSgIVUlBdWGlfAvGrYGeNlywNdlZ5UK0J1/PF5qbgwl2v131/oyBbfr0hGtxzRYka6+MgqL63zxKZRRiT1GBtyxMpdXIwpKTG20o7s5iC7MIFtgoaQ4S2k5fxb/lyZoESnqLhSvNSxO8bOUTW3kRhMRkBXdrfXk/8y2tldO53chWnGWEse4dIaSwPWWlU0QvyM2WQCHrJkauYSzBAhEZxkLIQs6KoStHH19P8f3Jcd72GKw7Xa9u7/WbG2CJbYivMY1tsm+2zA9ZkkuXsnj2wR+fOeXKenZfP0QGnvzPPfsB5/QCwVJid</latexit>

(q̂B , p̂B)
<latexit sha1_base64="DSzZhRDpyZOgED2PrdTNdHyJqSY=">AAACCXicdVDLSgNBEJz1bXxFxZOXwSAoyDLr+og3iRePCkaFJCy9Y6tDZh/O9Aqy+AV+hVc9eROvfoUH/8XNGkFF61RUddPVFaZaWRLizRkYHBoeGR0br0xMTk3PVGfnjm2SGYlNmejEnIZgUasYm6RI42lqEKJQ40nY3ev5J9dorEriI7pJsRPBRazOlQQqpKC6sNK+BOJXQWONlywNGqs8qNaEu133fbHOhetvbm3V/YKITd/bEdxzRYka6+MgqL63zxKZRRiT1GBtyxMpdXIwpKTG20o7s5iC7MIFtgoaQ4S2k5fxb/lyZoESnqLhSvNSxO8bOUTW3kRhMRkBXdrfXk/8y2tldF7v5CpOM8JY9g6R0lgestKoohfkZ8ogEfSSI1cxl2CACI3iIGUhZkVRlaKPr6f5/+R43fV8Vxxu1HYb/WbG2CJbYivMY9tsl+2zA9ZkkuXsnj2wR+fOeXKenZfP0QGnvzPPfsB5/QCyR5ie</latexit>

• validity before the Ehrenfest time

N
<latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit><latexit sha1_base64="Sgu67+nKLdBZHIbRhKUeA6bUxTM=">AAAB83icbVC7SgNBFJ31GeMramkzGASrsCuClkEbK0nAPCBZwuzkJg6ZnV1m7ggh5AtstbITWz/Iwn9xdt1CE091OOde7rknSqUw6Puf3srq2vrGZmmrvL2zu7dfOThsm8RqDi2eyER3I2ZACgUtFCihm2pgcSShE01uMr/zCNqIRN3jNIUwZmMlRoIzdFLzblCp+jU/B10mQUGqpEBjUPnqDxNuY1DIJTOmF/gphjOmUXAJ83LfGkgZn7Ax9BxVLAYTzvKgc3pqDcOEpqCpkDQX4ffGjMXGTOPITcYMH8yil4n/eT2Lo6twJlRqERTPDqGQkB8yXAvXANCh0IDIsuRAhaKcaYYIWlDGuROtq6Ts+ggWv18m7fNa4Hjzolq/LpopkWNyQs5IQC5JndySBmkRToA8kWfy4lnv1Xvz3n9GV7xi54j8gffxDUUVkVc=</latexit>

N � 1
<latexit sha1_base64="jtSYBLbXAdCGrzaqRG56M0FRKI4=">AAAB+XicbVC7TsNAEFzzDOEVoKQ5ESFRRTYgQRlBQ4WCRB5SYkXny8accn7obo0UWfkIWqjoEC1fQ8G/YBsXkDDVaGZXOzterKQh2/60lpZXVtfWKxvVza3tnd3a3n7HRIkW2BaRinTP4waVDLFNkhT2Yo088BR2vcl17ncfURsZhfc0jdENuB/KsRScMql7ywa+z5xhrW437AJskTglqUOJ1rD2NRhFIgkwJKG4MX3HjslNuSYpFM6qg8RgzMWE+9jPaMgDNG5axJ2x48RwiliMmknFChF/b6Q8MGYaeNlkwOnBzHu5+J/XT2h86aYyjBPCUOSHSCosDhmhZdYDspHUSMTz5MhkyATXnAi1ZFyITEyyYqpZH87894ukc9pwzhr23Xm9eVU2U4FDOIITcOACmnADLWiDgAk8wTO8WKn1ar1Z7z+jS1a5cwB/YH18A6o+kzA=</latexit>
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<latexit sha1_base64="FtyFcXGFFmeFLWMJCPQrUlSU81M="></latexit>
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<latexit sha1_base64="FtyFcXGFFmeFLWMJCPQrUlSU81M="></latexit>

ê
H(t) = Ĥ � !(t) · Ŝ

<latexit sha1_base64="RxewVyrN1FKEjgYJcHgSpoKYAeQ="></latexit>

Ŝ = ŜA + ŜB
<latexit sha1_base64="vBrRCOVYHfg8nUivqOV38V89+ro=">AAACKHicbZC7TgJREIbP4g3xhlranEhMTEzIrpJoY4LYWGKUSwKEzB4GOOHsJefMmpANL+Ij+BS2WtkZChufxAUpBJzqz/fPZGZ+N1TSkG2PrdTK6tr6Rnozs7W9s7uX3T+omiDSAisiUIGuu2BQSR8rJElhPdQInquw5g5uJ37tCbWRgf9IwxBbHvR82ZUCKEHtbKHpBqrD42YfiD+M+DWfB+0bfraISu1szs7b0+LLwpmJHJtVuZ39anYCEXnok1BgTMOxQ2rFoEkKhaNMMzIYghhADxuJ9MFD04qn3434SWSAAh6i5lLxKcS/EzF4xgw9N+n0gPpm0ZvA/7xGRN2rViz9MCL0xWQRSYXTRUZomcSGvCM1EsHkcuTS5wI0EKGWHIRIYJTkmEnycBa/XxbV87xzkbfvC7liaZZMmh2xY3bKHHbJiuyOlVmFCfbMXtkbe7derA/r0xr/tqas2cwhmyvr+wfODKTG</latexit>

• decompose the collective spin ŜA
<latexit sha1_base64="fNQV1AYvkveSdQCxkRb3gN3uN9Q=">AAACBXicdVA9TwJBEN3zE/ELtbTZSEysLneIih1qY6lRxAQImVsG2Lj3kd05jblQ+ytstbIztv4OC/+LC2KiRl/18t5M5s0LEiUNed6bMzE5NT0zm5vLzy8sLi0XVlYvTJxqgTURq1hfBmBQyQhrJEnhZaIRwkBhPbg6Gvr1a9RGxtE53SbYCqEXya4UQFZqF1aaQaw6PGv2gbKzwaB90C4UPdffKe2Xfe65ZX9/16tYUiltW437rjdCkY1x0i68NzuxSEOMSCgwpuF7CbUy0CSFwkG+mRpMQFxBDxuWRhCiaWWj6AO+mRqgmCeouVR8JOL3jQxCY27DwE6GQH3z2xuKf3mNlLqVViajJCWMxPAQSYWjQ0ZoaTtB3pEaiWCYHLmMuAANRKglByGsmNqS8raPr6f5/+Si5PrbrndaLlYPx83k2DrbYFvMZ3usyo7ZCasxwW7YPXtgj86d8+Q8Oy+foxPOeGeN/YDz+gGIRJjE</latexit>

ŜB
<latexit sha1_base64="aQ62h0t2FxZE7uRjFkhGeXzT/Q0=">AAACBXicdVA9SwNBEN2L3/Er0dJmMQhWx56nJnZBG0tFo4EkhLnNqIt7H+zOKeFI7a+w1cpObP0dFv4XLzGCir7q8d4M8+YFiVaWhHhzChOTU9Mzs3PF+YXFpeVSeeXMxqmR2JCxjk0zAItaRdggRRqbiUEIA43nwfXB0D+/QWNVHJ1SP8FOCJeRulASKJe6pXI7iHWPZ+0roOxkMOjud0sV4VZrvi+2uHD9nd3dmp8TseN7e4J7rhihwsY46pbe271YpiFGJDVY2/JEQp0MDCmpcVBspxYTkNdwia2cRhCi7WSj6AO+kVqgmCdouNJ8JOL3jQxCa/thkE+GQFf2tzcU//JaKV3UOpmKkpQwksNDpDSODllpVN4J8p4ySATD5MhVxCUYIEKjOEiZi2leUjHv4+tp/j8523I93xXH25X6/riZWbbG1tkm81iV1dkhO2INJtktu2cP7NG5c56cZ+flc7TgjHdW2Q84rx9/7Ji+</latexit>

�Q = �P
<latexit sha1_base64="IQJu6k+snJb2GAnnbrrX72JOk3I=">AAACCHicbVDLSgNBEJyNrxhf8XHzMhgET2FXBb0IQT14TMA8IAmhd9KJQ2YfzPQKMeQH/AqvevImXv0LD/6Lu+seNLFORVU3XV1uqKQh2/60cguLS8sr+dXC2vrG5lZxe6dhgkgLrItABbrlgkElfayTJIWtUCN4rsKmO7pK/OY9aiMD/5bGIXY9GPpyIAVQLPWKe51rVAS9Gr/gGa3yXrFkl+0UfJ44GSmxDNVe8avTD0TkoU9CgTFtxw6pOwFNUiicFjqRwRDECIbYjqkPHpruJE0/5YeRAQp4iJpLxVMRf29MwDNm7LnxpAd0Z2a9RPzPa0c0OO9OpB9GhL5IDpFUmB4yQsu4FuR9qZEIkuTIpc8FaCBCLTkIEYtR3FMh7sOZ/X6eNI7LzknZrp2WKpdZM3m2zw7YEXPYGauwG1ZldSbYA3tiz+zFerRerTfr/Wc0Z2U7u+wPrI9vc4GYgg==</latexit>

1p
N

⇠
<latexit sha1_base64="baaNmUSMYthr5DfDyorDY/5QrZ0=">AAACCHicbVC7TsNAEDyHVwiv8OhoTkRIVJENSFBG0FChIJGHFFvR+rIJp5wf3K2RgpUf4CtooaJDtPwFBf+CHVJAYKrRzK52dvxYSUO2/WEV5uYXFpeKy6WV1bX1jfLmVtNEiRbYEJGKdNsHg0qG2CBJCtuxRgh8hS1/eJ77rTvURkbhNY1i9AIYhLIvBVAmdcs7bl+D4E7qmltN/HLsGhl0yxW7ak/A/xJnSipsinq3/On2IpEEGJJQYEzHsWPyUtAkhcJxyU0MxiCGMMBORkMI0HjpJP2Y7ycGKOIxai4Vn4j4cyOFwJhR4GeTAdCNmfVy8T+vk1D/1EtlGCeEocgPkVQ4OWSEllktyHtSIxHkyZHLkAvQQIRachAiE5Osp1LWhzP7/V/SPKw6R1X76rhSO5s2U2S7bI8dMIedsBq7YHXWYILds0f2xJ6tB+vFerXevkcL1nRnm/2C9f4F8g+ZdA==</latexit>

�Q(tEhr) ⇠ 1
<latexit sha1_base64="5+/x6i8orbBvFTCKbQ6MSOdmgvU=">AAACE3icbVDLSgNBEJyNrxhfUY8eHAxCvIRdFfQYfIDHBEwiZMPSO2l1yOyDmV4xLDn6CX6FVz15E69+gAf/xU3MQRPrVFR1013lx0oasu1PKzczOze/kF8sLC2vrK4V1zeaJkq0wIaIVKSvfDCoZIgNkqTwKtYIga+w5fdOh37rDrWRUXhJ/Rg7AdyE8loKoEzyitvuGSoCr14mL3UJ7yk9v9WDwR53jQy44xVLdsUegU8TZ0xKbIyaV/xyu5FIAgxJKDCm7dgxdVLQJIXCQcFNDMYgenCD7YyGEKDppKMgA76bGKCIx6i5VHwk4u+NFAJj+oGfTQZAt2bSG4r/ee2Ero87qQzjhDAUw0MkFY4OGaFl1hDyrtRIBMPPkcuQC9BAhFpyECITk6yyQtaHM5l+mjT3K85Bxa4flqon42bybIvtsDJz2BGrsgtWYw0m2AN7Ys/sxXq0Xq036/1nNGeNdzbZH1gf3wqfncg=</latexit>

�Q(t) 6= �P (t)
<latexit sha1_base64="teHMuyvyLxf3Jh4R3y1mKB1OVvw=">AAACEHicbZC7TsNAEEXXPEN4BSihWBEhhSayAQlKBBSUiUQeUhxF42WAFeu12R0joSgNn8BX0EJFh2j5Awr+Bdu4gMBUV+fOaGZuECtpyXU/nInJqemZ2dJceX5hcWm5srLatlFiBLZEpCLTDcCikhpbJElhNzYIYaCwE1wfZ37nFo2VkT6juxj7IVxqeSEFUIoGlQ3/BBXBoFmjbe5rvOEFaKRgUKm6dTcv/ld4haiyohqDyqd/HokkRE1CgbU9z42pPwRDUigclf3EYgziGi6xl0oNIdr+MP9ixLcSCxTxGA2XiucQf04MIbT2LgzSzhDoyo57GfzP6yV0cdAfSh0nhFpki0gqzBdZYWQaD/JzaZAIssuRS80FGCBCIzkIkcIkzauc5uGNf/9XtHfq3m7dbe5VD4+KZEpsnW2yGvPYPjtkp6zBWkywe/bIntiz8+C8OK/O23frhFPMrLFf5bx/ATvAm58=</latexit>

Q
<latexit sha1_base64="3Duo8oTSidvQVElLBoDW8zeIWDc=">AAAB83icbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRlBQ5lI5CElVrS+bMIp54fu9pCiKF9ACxUdouWDKPgXbOMCEqYazexqZydIlDTkup/Oyura+sZmaau8vbO7t185OGyb2GqBLRGrWHcDMKhkhC2SpLCbaIQwUNgJJreZ33lEbWQc3dM0QT+EcSRHUgClUrM5qFTdmpuDLxOvIFVWoDGofPWHsbAhRiQUGNPz3IT8GWiSQuG83LcGExATGGMvpRGEaPxZHnTOT60BinmCmkvFcxF/b8wgNGYaBulkCPRgFr1M/M/rWRpd+zMZJZYwEtkhkgrzQ0ZomTaAfCg1EkGWHLmMuAANRKglByFS0aaVlNM+vMXvl0n7vOZd1NzmZbV+UzRTYsfshJ0xj12xOrtjDdZigiF7Ys/sxbHOq/PmvP+MrjjFzhH7A+fjG0pqkVw=</latexit>

P
<latexit sha1_base64="77Y7p7pshV2kTooqUyjLEmcmvMw=">AAAB83icbVC7TgMxEPSFVwivACWNRYREFd0BEpQRNJSJRB5SckI+ZxOs+Hwne40UnfIFtFDRIVo+iIJ/wXekgISpRjOz2t2JUikM+v6nV1pZXVvfKG9WtrZ3dveq+wcdk1jNoc0TmehexAxIoaCNAiX0Ug0sjiR0o8lN7ncfQRuRqDucphDGbKzESHCGTmo176s1v+4XoMskmJMamcPlvwbDhNsYFHLJjOkHfophxjQKLmFWGVgDKeMTNoa+o4rFYMKsOHRGT6xhmNAUNBWSFiL8nshYbMw0jlwyZvhgFr1c/M/rWxxdhZlQqUVQPF+EQkKxyHAtXANAh0IDIssvByoU5UwzRNCCMs6daF0lFddHsPj9Mumc1YPzut+6qDWu582UyRE5JqckIJekQW5Jk7QJJ0CeyDN58az36r157z/RkjefOSR/4H18A0jbkVs=</latexit>



        and collective excitations 

GA =

✓
GqAqA GqApA

GqApA GpApA

◆
.

<latexit sha1_base64="IncmAtZ7d5sAlTDjx3svARtgmm8="></latexit>

the system is quadratic: ⇢̂A
<latexit sha1_base64="NDHjnpWUSfYBpJhmQHV8jiJMCZo=">AAAB/XicbVC7TsNAEDzzDOEVoKQ5ESFRRTYgQRmgoQwSeUixFa0vm+SU80N3a6QoivgKWqjoEC3fQsG/YBsXkDDVaGZXOzt+rKQh2/60lpZXVtfWSxvlza3tnd3K3n7LRIkW2BSRinTHB4NKhtgkSQo7sUYIfIVtf3yT+e0H1EZG4T1NYvQCGIZyIAVQKnXdERB39SjqXfUqVbtm5+CLxClIlRVo9Cpfbj8SSYAhCQXGdB07Jm8KmqRQOCu7icEYxBiG2E1pCAEab5pHnvHjxABFPEbNpeK5iL83phAYMwn8dDIAGpl5LxP/87oJDS69qQzjhDAU2SGSCvNDRmiZdoG8LzUSQZYcuQy5AA1EqCUHIVIxScspp304898vktZpzTmr2Xfn1fp10UyJHbIjdsIcdsHq7JY1WJMJFrEn9sxerEfr1Xqz3n9Gl6xi54D9gfXxDYtjlW0=</latexit>

is gaussian

correlation matrix

[Barthel, Chung, Schollwock - Phys. Rev. A, 2006]
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separable states detGA =
1

4
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hn̂exci = 0
<latexit sha1_base64="Sdisqe8jsgpcDqjeYrF+TmKkA3Q=">AAACGnicbVC7TsNAEDyHd3gZKGlORCCqyAYkaJAQNJRBIhApjqL1ZQmnnM/W3RolsvIHfAJfQQsVHaKloeBfsJMUvKYazexqdyZMlLTkeR9OaWp6ZnZufqG8uLS8suqurV/ZODUC6yJWsWmEYFFJjXWSpLCRGIQoVHgd9s4K//oOjZWxvqRBgq0IulreSAGUS213J1Cguwp5cAvEdTsLCPuUYV8MhzwwY+/Ya7sVr+qNwP8Sf0IqbIJa2/0MOrFII9QkFFjb9L2EWhkYkkLhsBykFhMQPehiM6caIrStbJRnyLdTCxTzBA2Xio9E/L6RQWTtIArzyQjo1v72CvE/r5nSzVErkzpJCbUoDpHM8xWHrDAyLwp5RxokguJz5FJzAQaI0EgOQuRimjdXzvvwf6f/S672qv5+1bs4qJycTpqZZ5tsi+0ynx2yE3bOaqzOBLtnj+yJPTsPzovz6ryNR0vOZGeD/YDz/gX2YqD2</latexit>

Entanglement between bosons (qA, pA)
<latexit sha1_base64="hKXwsvZEsbgn0TVb7e7YkgKjiyM="></latexit>

(qB , pB)
<latexit sha1_base64="IF9TNRSxvvHRF02JICEtA9McHEw="></latexit>

and

hn̂exci � 1
<latexit sha1_base64="O20UY452If3bnoXLaPj48FO0tbw=">AAACHXicbVC7TsNAEDzzJrwClDQnIiRoIhuQoIygoQSJQKQ4itaXjXPifLbu1iiRlW/gE/gKWqjoEC2i4F+wQwpImGo0s6vdmSBR0pLrfjozs3PzC4tLy6WV1bX1jfLm1o2NUyOwLmIVm0YAFpXUWCdJChuJQYgChbfB3Xnh396jsTLW1zRIsBVBqGVXCqBcapcPuK9Ahwr9HhDX7cwn7FOGfTEcct+MLO6HIffa5YpbdUfg08Qbkwob47Jd/vI7sUgj1CQUWNv03IRaGRiSQuGw5KcWExB3EGIzpxoitK1sFGnI91ILFPMEDZeKj0T8vZFBZO0gCvLJCKhnJ71C/M9rptQ9bWVSJymhFsUhknnE4pAVRuZdIe9Ig0RQfI5cai7AABEayUGIXEzz8kp5H95k+mlyc1j1jqru1XGldjZuZontsF22zzx2wmrsgl2yOhPsgT2xZ/biPDqvzpvz/jM644x3ttkfOB/fNmeiIg==</latexit>
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SA = 0
<latexit sha1_base64="UctM2UgGorCMjj2YUcsWHlXquBw=">AAACIXicbVA9SwNBEN2LUWP8SrS0WQyCVbhTQRshamMZ0XxAcoS9zSQu2ftgd04IR36ErZb+GjuxE/+Me+cVJnGqx3sz82aeF0mh0ba/rMJKcXVtvbRR3tza3tmtVPfaOowVhxYPZai6HtMgRQAtFCihGylgvieh401uUr3zBEqLMHjAaQSuz8aBGAnO0FCd+8EVvaT2oFKz63ZWdBk4OaiRvJqDqlXsD0Me+xAgl0zrnmNH6CZMoeASZuV+rCFifMLG0DMwYD5oN8nundGjWDMMaQSKCkkzEv5OJMzXeup7ptNn+KgXtZT8T+vFOLpwExFEMULAUyMUEjIjzZUwQQAdCgWILL0cqAgoZ4ohghKUcW7I2CQzZ+h5oRyaXVQMjSxwSkOz0DygyiY3ZzGlZdA+qTundfvurNa4zhMskQNySI6JQ85Jg9ySJmkRTibkmbyQV+vNerc+rM/f1oKVz+yTubK+fwBuXKGt</latexit>
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+
<latexit sha1_base64="ihvS/Vzd2prXpy89ASX1we67nhE=">AAACG3icbVA9SwNBEN2LUWP8SrS0WQyCIIQ7FbQM2lgmYD4gOcLe3iQu2ftgd04IR36BrZb+GjuxtfDfuHdeYaJTPd6bmTfzvFgKjbb9ZZXWyusbm5Wt6vbO7t5+rX7Q01GiOHR5JCM18JgGKULookAJg1gBCzwJfW92m+n9R1BaROE9zmNwAzYNxURwhobqnI1rDbtp50X/AqcADVJUe1y3yiM/4kkAIXLJtB46doxuyhQKLmFRHSUaYsZnbApDA0MWgHbT/NIFPUk0w4jGoKiQNCfh90TKAq3ngWc6A4YPelXLyP+0YYKTazcVYZwghDwzQiEhN9JcCRMBUF8oQGTZ5UBFSDlTDBGUoIxzQyYmkyVDz4ukb3ZR4RtZ4JxGZqF5QFVNbs5qSn9B77zpXDTtzmWjdVMkWCFH5JicEodckRa5I23SJZwAeSLP5MV6td6sd+vjp7VkFTOHZKmsz28KGZ/8</latexit>

SA(t)
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2
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<latexit sha1_base64="RZCrBHWUafKq96af/uobkB+WmBw="></latexit>

Relation to semi-classical trajectories

SA(t) ⇠ log t
<latexit sha1_base64="19V7xp0vUZWq4cZ3ljWLQug37/Q=">AAACBnicbVC7TsNAEDyHVwgvE0qaExFSaCIbkKAM0FAGQR5SbEXnyyaccn7obo2IrPR8BS1UdIiW36DgX7CNCwhMNZrZ1c6OF0mh0bI+jNLC4tLySnm1sra+sbllblc7OowVhzYPZah6HtMgRQBtFCihFylgvieh600uMr97B0qLMLjBaQSuz8aBGAnOMJUGZvV6cFbHA+po4VNHhmOKA7NmNawc9C+xC1IjBVoD89MZhjz2IUAumdZ924rQTZhCwSXMKk6sIWJ8wsbQT2nAfNBukmef0f1YMwxpBIoKSXMRfm4kzNd66nvppM/wVs97mfif149xdOomIohihIBnh1BIyA9prkRaCtChUIDIsuRARUA5UwwRlKCM81SM05YqaR/2/Pd/SeewYR81rKvjWvO8aKZMdskeqRObnJAmuSQt0iac3JNH8kSejQfjxXg13r5HS0axs0N+wXj/AvfGl7U=</latexit>

hn̂exc(t)i ⇠ t2
<latexit sha1_base64="GVut28XMARBtn/eEAtUfw1ZXpL4=">AAACInicbVC7TsNAEDzzDOEVoKQ5ESFBE9kBCcoIGsogkYAUh2h9LOGU89m6W6NEVv6CT+AraKGiQ1RI8C/YwQWvqUYzu9qdCWIlLbnumzM1PTM7N19aKC8uLa+sVtbW2zZKjMCWiFRkLgKwqKTGFklSeBEbhDBQeB4MjnP//BaNlZE+o1GM3RD6Wl5LAZRJvUrNV6D7Crl/A8R1L/UJh5TiUIzHO7Trm8K1MuR0We9Vqm7NnYD/JV5BqqxAs1f58K8ikYSoSSiwtuO5MXVTMCSFwnHZTyzGIAbQx05GNYRou+kk15hvJxYo4jEaLhWfiPh9I4XQ2lEYZJMh0I397eXif14noevDbip1nBBqkR8imaXMD1lhZFYY8itpkAjyz5FLzQUYIEIjOQiRiUnWYDnrw/ud/i9p12veXs093a82jopmSmyTbbEd5rED1mAnrMlaTLA79sAe2ZNz7zw7L87r1+iUU+xssB9w3j8BTnSkRw==</latexit>

Generic quenches

SA(t) ⇠ �hc t
<latexit sha1_base64="Va/vNL7fPJXj25sYn7oYAfl67gM=">AAACEXicbVDLSgNBEJz1bXxFPYowGIQIEnZV0KOPi0dFYwLZZemddOLg7IOZXkGWnPwEv8KrnryJV7/Ag//iZt2DRutUVHXR3RUkShqy7Q9rbHxicmp6ZrYyN7+wuFRdXrkycaoFNkWsYt0OwKCSETZJksJ2ohHCQGEruDkZ+q1b1EbG0SXdJeiF0I9kTwqgXPKr6xf+UZ22uGtkyF2VB7vgZ9e+GLjbnPxqzW7YBfhf4pSkxkqc+dVPtxuLNMSIhAJjOo6dkJeBJikUDipuajABcQN97OQ0ghCNlxVvDPhmaoBinqDmUvFCxJ+JDEJj7sIgnwyBrs2oNxT/8zop9Q68TEZJShiJ4SKSCotFRmiZ94O8KzUSwfBy5DLiAjQQoZYchMjFNC+skvfhjH7/l1ztNJzdhn2+Vzs8LpuZYWtsg9WZw/bZITtlZ6zJBLtnj+yJPVsP1ov1ar19j45ZZWaV/YL1/gVjdJxL</latexit>
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Figure 5: Entanglement dynamics from quenches starting from a paramagnetic
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
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tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
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Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
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ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s
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N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
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initial state one of the two ground states of the LMG
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Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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compare our general formula (34) with the exact numerical
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
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tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-

pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the
spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
(ED) results are perfectly reproduced by our analytical cal-
culation up saturation at the Ehrenfest time tEhr s

p
N
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/2
(t
)

J t

hf = 0.5J

N = 50
N = 100
N = 200
N = 400

Analytical

Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
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initial state one of the two ground states of the LMG
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dynamical critical point, due to the exponential growth
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
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(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s
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N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by
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Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.
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It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s
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N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
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p
hc(J � hc).

0

0.5

1

1.5

2

2.5

3

1 10 100

J t

hf = 0.2J

(a.) � = 0
hf < hc

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

J t

hf = 0.5J

(b.) � = 0
hf = hc

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10

t J

� = 0.1

Analytical
N = 20
N = 40
N = 80

(c.) � = 0.1
hf > hc

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10

t J

� = 0.7

(d.) � = 0.7
hf > hc

Figure 8: Entanglement dynamics from quenches starting from a paramagnetic

6

0

0.5

1

1.5

2

2.5

3

1 10 100

J t

hf = 0.2J

(a.) � = 0
hf < hc

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

J t

hf = 0.5J

(b.) � = 0
hf = hc

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10

t J

� = 0.1

Analytical
N = 20
N = 40
N = 80

(c.) � = 0.1
hf > hc hf > hc

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 1 10

t J

� = 0.7

(d.) � = 0.7

Figure 8: Entanglement dynamics from quenches starting from a paramagnetic

6

Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-
pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the

spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
(ED) results are perfectly reproduced by our analytical cal-
culation up saturation at the Ehrenfest time tEhr s

p
N

for generic quenches [Fig. 1 (bottom) and Fig. 3(a)] and
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Numerical simulations have shown that the growth in time of entanglement after a sudden quantum
quench typically becomes very slow when interactions are long-ranged, even in the absence of disorder.
In this Letter, we unveil the general mechanism underlying this counter-intuitive phenomenon. We
first demonstrate that the evolution of entanglement entropy in infinite-range spin systems can be
computed analytically in terms of the time-dependent collective spin squeezing, and is governed
by the structure of underlying semiclassical trajectories, leading to a universal logarithmic growth.
Hence, by establishing explicit bounds on pre-thermalization time scales, we show how the slowness of
entanglement growth extends to systems with slowly-decaying interactions. All our analytical results
agree with exact numerical computations for quantum Ising chains with long-range interactions.
Our findings establish a novel theoretical paradigm for entanglement dynamics in the presence of
long-range interactions, and are directly related to experimental measurements of entanglement
entropy in notable platforms, including atomic condensates, cavity-QED systems and trapped ions.

Introduction.— It is by now well established that a large
body of information about the non-equilibrium dynamics
of quantum many-body systems, the scrambling of their
quantum information, and the complexity of their nu-
merical simulations can be inferred from the evolution of
entanglement [1–10]. A paradigm for these studies is rep-
resented by the growth of bipartite entanglement entropy
S(t) after a sudden quantum quench. In the presence of
local interactions, S(t) is generically expected to obey a
volume law after a linear increase in time [11, 12] AL: cite
other work on random unitary circuits [2–4, 13].
However, the presence of (exact or approximate) spatially
localized conserved quantities results in a dramatically
slower growth of S(t), as occurs in the presence of strong
disorder [6, 14, 15] [? ] or sufficiently complex interac-
tions [16–18] AL: cite nat phys calabrese, stark mbl.
In this context, many-body localized or quasi-localized
dynamics can be characterized by a strongly sublinear
increase of S(t), in most cases logarithmically slow [6].

A number of recent studies [19–21] have reported numer-
ical evidence of a logarithmic growth in time of bipartite
entanglement entropy in long-range interacting quantum
spin chains, which is reminiscent of the phenomenology of
many-body localization, despite the absence of static or
configurational disorder. A connection has been suggested
between this occurrence and the ergodicity breaking which
takes place in the infinite-range limit [20], where the
full permutational symmetry constrains the wavefunction
within a small sector of the full Hilbert space. However,
clear theoretical understanding of the time-dependence
of entanglement and its slowdown is apparently lacking.

In this Letter, we identify the mechanism which gov-
erns the growth of entanglement in long-range interacting
spin systems, which we schematically illustrate in Fig. 1.
We establish the analytical connection between the von
Neumann entanglement entropy S and the number hn̂exci
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<latexit sha1_base64="jiX/8/eQLRHcsfzz/5GRjtkvRk0=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXB8bRfrrg1dwa6SLycVEiORr/81RtEPAlBIZfMmK7nxuinTKPgEqalXmIgZnzMRtC1VLEQjJ/OEk/pUWIYRjQGTYWkMxF+b6QsNGYSBnYyZHhn5r1M/M/rJjg891Oh4gRB8ewQCgmzQ4ZrYasAOhAaEFmWHKhQlDPNEEELyji3YmK7Kdk+vPnvF0nrpOZZfn1aqV/kzRTJATkkVeKRM1InV6RBmoQTRZ7IM3lxHp1X5815/xktOPnOPvkD5+MbGLWVMQ==</latexit><latexit sha1_base64="jiX/8/eQLRHcsfzz/5GRjtkvRk0=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXB8bRfrrg1dwa6SLycVEiORr/81RtEPAlBIZfMmK7nxuinTKPgEqalXmIgZnzMRtC1VLEQjJ/OEk/pUWIYRjQGTYWkMxF+b6QsNGYSBnYyZHhn5r1M/M/rJjg891Oh4gRB8ewQCgmzQ4ZrYasAOhAaEFmWHKhQlDPNEEELyji3YmK7Kdk+vPnvF0nrpOZZfn1aqV/kzRTJATkkVeKRM1InV6RBmoQTRZ7IM3lxHp1X5815/xktOPnOPvkD5+MbGLWVMQ==</latexit><latexit sha1_base64="jiX/8/eQLRHcsfzz/5GRjtkvRk0=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXB8bRfrrg1dwa6SLycVEiORr/81RtEPAlBIZfMmK7nxuinTKPgEqalXmIgZnzMRtC1VLEQjJ/OEk/pUWIYRjQGTYWkMxF+b6QsNGYSBnYyZHhn5r1M/M/rJjg891Oh4gRB8ewQCgmzQ4ZrYasAOhAaEFmWHKhQlDPNEEELyji3YmK7Kdk+vPnvF0nrpOZZfn1aqV/kzRTJATkkVeKRM1InV6RBmoQTRZ7IM3lxHp1X5815/xktOPnOPvkD5+MbGLWVMQ==</latexit><latexit sha1_base64="jiX/8/eQLRHcsfzz/5GRjtkvRk0=">AAAB/HicbVC7TsNAEDyHVwivACXNiQgpNJGNkKCMoKEMEnmIxIrOl0045Xy27taIyApfQQsVHaLlXyj4F87BBSRMNZrZ1c5OEEth0HU/ncLS8srqWnG9tLG5tb1T3t1rmSjRHJo8kpHuBMyAFAqaKFBCJ9bAwkBCOxhfZn77HrQRkbrBSQx+yEZKDAVnaKXbHsIDptXB8bRfrrg1dwa6SLycVEiORr/81RtEPAlBIZfMmK7nxuinTKPgEqalXmIgZnzMRtC1VLEQjJ/OEk/pUWIYRjQGTYWkMxF+b6QsNGYSBnYyZHhn5r1M/M/rJjg891Oh4gRB8ewQCgmzQ4ZrYasAOhAaEFmWHKhQlDPNEEELyji3YmK7Kdk+vPnvF0nrpOZZfn1aqV/kzRTJATkkVeKRM1InV6RBmoQTRZ7IM3lxHp1X5815/xktOPnOPvkD5+MbGLWVMQ==</latexit>

t = 0
<latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit><latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit><latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit><latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit>

t
<latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit><latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit><latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit><latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit>

NB
<latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit>

NA
<latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit>

NA
<latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit>
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP

� 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = �
J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Ĥ = �
J

N↵,N

X

i 6=j

ŝ
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

Figure 1. Entanglement dynamics and collective spin-
squeezing in long-range quantum spin systems. (a) The system
is partitioned into two blocks of NA and NB spins-1/2, ini-
tially fully polarized. (b) Collective spins of the two blocks,
on spheres of radii NA/2 and NB/2, with quantum uncer-
tainty of transverse components, of relative width 1/

p
NA,B

respectively. (c) Collective spin in the factorized initial state,
represented on a sphere of radius N/2. (d) Collective spin
squeezing after a quench makes the two blocks increasingly
correlated (entangled). The slow rate of squeezing after non-
critical quenches determines the slow growth of entanglement,
as explained in the main text. (e) The analytical formula
derived in this Letter accurately describes the growth of en-
tanglement entropy until saturation (here, quantum quench
from the ferromagnetic to the paramagnetic phase of a fully-
connected quantum Ising model). The mechanism illustrated
in this figure governs entanglement dynamics in generic quan-
tum spin systems with slowly-decaying interactions.

of quantum collective excitations. The latter quantity, in
turn, is directly related to collective spin-squeezing [22],
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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><
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Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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fixed size N = 200. Analytical results from Eq. (34) (full
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the inset, SNA � 1/2 log fAfB is plotted as a function of the
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N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Ĥ = � J

N↵,N

X

i 6=j

ŝ
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
8
><

>:

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
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tude s = 1/2 whose position on the d-dimensional lattice
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.
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G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.
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G
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Growth in time of the entanglement entropy SNA(t)
after a quantum quench above (top), below (center) at and
the dynamical critical point (bottom). (Top panel) Analytical
results from Eq. (34) at hf = 2 (full lines) are compared with
exact numerical results (dots) for various bipartitions with
fractions of spins fA = NA/N = 0.05÷ 0.4 are considered at
fixed size N = 200. In the inset, SNA �1/2 log fAfB is plotted
as a function of the rescaled time t/

p
N , in order to highlight

the validity of the expansion in Eq. (36). (Center/bottom
panel) half-system entanglement entropy SN/2 for increasing
system sizes N = 50÷ 800. (Center) Logarithmic increase of
SN/2(t) for a quench with hf = 0.2: the exact diagonalization
results follow the logarithmic increase up to tEhr s

p
N , where

they saturate to SN/2 s logN . (Bottom) Linear growth in
time for a quench at the dynamical critical point hf = 0.5.
Before the Ehrenfest time tEhr s logN , numerical data for
SN/2 are accurately reproduced by the analytical result (34)
marked by the dotted line with a slope �hc = J . This linear
regime is followed by saturation to a value s logN .

equations of motion101 are obtained
(
✓̇ = 2J sin ✓ cos� sin�

�̇ = �2h+ 2J cos ✓ cos2 � ,

(48)

while the dynamical correlations of collective spin fluctu-
ations in Eq. (30) evolve according to
8
><

>:

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).

These equations are exact in the limit N ! 1, while
finite-size correction occur over the Ehrenfest time scale
tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. ??, ?? we compare the predictions of our gen-
eral formula (34) with the results of exact numerical
computations at finite N , obtained following the decom-
position in Ref. 100. For the sake of definiteness, we
consider as initial state one of the two ground states of
the LMG Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 3. Conversely, in Fig. 3, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 3, as well as the quality of the agreement between
the exact numerics and our analytical results do not de-
pend at all on the specific choice of the LMG Hamiltonian
(46), nor on the specific choice of pre- and post-quench
parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising

and evolve 

8

explore all the allowed Hilbert space, and their entan-
glement is upper-bounded by SA  log (dimHA). For
generic many-body systems, the dimension of HA is ex-
ponentially large with the volume of the subsystem [e.g.
dim(HA) = 2NA for spins-1/2], causing volume-law scal-
ing. In collective models under consideration here, how-
ever, the conservation of the collective spin magnitude (8)
reduces the dimension of the allowed Hilbert space to
dim(HA) = NA + 1.

V. COMPARISON WITH NUMERICS FOR THE
LIPKIN-MESHKOV-GLICK MODEL

In this Section, we apply the general scheme and results
found in Secs. III and IV for the entanglement entropy
growth to a paradigmatic quantum spin model, namely
the transverse-field Ising ferromagnet. Its infinite-range
version

HLMG = � 2J

N

NX

i 6=j=1

ŝ
x
i ŝ

x
j � 2h

NX

i=1

ŝ
z
i , (46)

is widely known in the literature as the Lipkin-Meshkov-
Glick model96 and it corresponds to the general Hamil-
tonian (6) with one-body terms Jz ⌘ h and two-body
interactions Jxx ⌘ J > 0. Factors are chosen in such a
way as to match the usual conventions on the LMG model
in terms of Pauli matrices. For large values of the trans-
verse field |h| > J the system is paramagnetic, with a
single equilibrium configuration of the spins aligned with
the field direction, and the non-equilibrium dynamics is
a precession around it. A quantum phase transition at
h = ±J separates this phase from a ferromagnetic one,
with a pair of ground states with spin orientation in the x-
z plane, symmetric with respect to flipping the x axis. The
out-of-equilibrium behavior has been widely studied97–99

and, in the case of a quantum quench, it is characterized
by the well-known phenomenon of dynamical phase tran-
sitions (DPT)26. The non-equilibrium trajectories of the
system may have paramagnetic or ferromagnetic charac-
ter depending on the initial state. The two families are
distinguished by the time-averaged magnetization Sx(t)
being vanishing or not, and are separated by a critical
trajectory (separatrix) with a diverging period, see Fig. 3
for an illustration.

The ground state entanglement entropy of the LMG
model has been studied in Refs. 86 and 100, where it is
found to be finite away from the quantum critical point
and logarithmically divergent with the system size in
correspondence of it. More recently, its growth in time
after a quench of the transverse field has been numerically
found to be consistent with a logarithmic behavior46,47.
In the following, using the general theory developed in
the previous Sections, we explicitly trace back this slow
dynamics of the entanglement entropy to the growth of
the collective quantum fluctuations.

The non-equilibrium evolution governed by the Hamil-
tonian (46) has been studied with the dynamical approach

(b)
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Figure 3. Illustration of possible instances of non-equilibrium
dynamics in the LMG model on the Bloch sphere of the collec-
tive spin. An initial fully polarized state at t = 0 is pictorially
represented as a point on the Bloch sphere, surrounded by a
small grey circle represented its transverse quantum fluctua-
tions. Time-evolution governed by Eq. (46) is characterized by
ferromagnetic (green) or paramagnetic (blue) periodic trajec-
tories, with Sx(t) 6= 0 and Sx(t) = 0, respectively, separated
by the unstable trajectory (red). For the quenches from h = 0
considered in Figs. 4, 5, these cases are realized for hf < hc,
hf > hc and hf = hc, respectively. Labels (a) and (b) re-
fer to two possible such initial states, a generic one (a) (i.e.,
non-critical), and a critical one (b). Quantum fluctuations
of the collective spin in these two initial states show quali-
tatively different behavior of spin-squeezing, as discussed in
Sec. IV, see Fig. 2. (a) Initial condition corresponding to a
regular quench: periodic orbits separate linearly in time and
the collective excitations grow as t2. (b) Initial condition at a
dynamical critical point: nearby orbits separate exponentially
fast in time. Compare with (a) and (b) in Fig. 2, respectively.

of Sec. III B in Refs. 24, 74, and 89. The expansion (19)
of the Hamiltonian in the rotating frame via Eqs. (26)
and (27) in this case reads
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2
cos ✓�̇� J

2
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1

2
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eh(1)
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2
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eh(2)
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eh(2)
PP = J cos 2� , (47e)

eh(2)
QP = J cos ✓ sin� cos� , (47f)

eh(2)
sw = J cos2 � . (47g)

By setting to zero the linear terms eh(1), the classical
equations of motion101 are obtained

(
✓̇ = 2J sin ✓ cos� sin�

�̇ = �2h+ 2J cos ✓ cos2 � ,

(48)

while the dynamical correlations of collective spin fluctu-



correlations generated by the Ising interaction
must be observed and understood. For large
trapped-ion simulators, this benchmarking requires
a detailed accounting of many-body physics in
an open quantum system.
Here, we observed and benchmarked entangle-

ment in hundreds of trapped ions generated with
engineered Ising interactions in a 2D array of
9Be+ ions in a Penning trap. To enable efficient
theoretical computation of the spin dynamics (28),
we performed experiments with a homogeneous
Ising interaction and without simultaneous appli-
cation of the transverse field Bx, finding good
agreement with a solution of the full quantum
master equation.
Our experimental system consists of between

20 and 300 9Be+ ions confined to a single-plane
Coulomb crystal in a Penning trap (Fig. 1) (28).
The trap is characterized by an axial magnetic field
jBj = 4.45 T and an axial trap frequency w z = 2p ×
1.57 MHz. A stack of cylindrical electrodes gen-
erates a harmonic confining potential along their
axis. Radial confinement is provided by the Lorentz
force from E × B–induced rotation in the axial
magnetic field. Time varying potentials applied
to eight azimuthally segmented electrodes gen-
erate a rotating wall potential that controls the
crystal rotation frequency w r, typically between
2p × 172 kHz and 2p × 190 kHz.
The spin-½ system is the 2S1/2 ground state

of the valence electron spin j↑i ≡ jmsi ¼ þ1=2,
j↓i ≡ jmsi ¼ −1=2. In the magnetic field of the
Penning trap, the ground state is split by 124 GHz.
A resonant microwave source provides an effec-
tive transverse field, which we use to perform
global rotations of the spin ensemble with a Rabi
frequency of 8.3 kHz. The T2 spin echo coherence

1298 10 JUNE 2016 • VOL 352 ISSUE 6291 sciencemag.org SCIENCE

Coherent Interactions

Decoherence

Fig. 2. Depolarization of the collective spin from spin-spin interactions and decoherence. (A) The
Husimi distribution of the collective spin state on a Bloch sphere calculated for the experimental param-
eters in (B), with N = 21, illustrating (top) an oversqueezed state generated by the Ising interaction at time
t = 2 ms with no decoherence and (bottom) a loss of contrast only from decoherence, effectively shrinking
the Bloch sphere. (B) Contrast versus interaction time for N = 21, 58, and 144 ions indicated by black circles,
red squares, and blue diamonds, respectively. Data are means ± SD; the solid lines are predictions, with no
free parameters, from a model that includes decoherence from spontaneous emission (28). The contrast
decay from decoherence caused by spontaneous emission is measured in the absence of spin-spin coupling
(black squares with the dashed line showing an exponential fit). At each t, the detuning d is adjusted to
eliminate spin-motion coupling at the end of the experiment, resulting in a different J∝1=d for each point.The
Bloch spheres show the Husimi distribution for a pure state of N = 21 at three different interaction times,
ignoring the effects of decoherence. Inset:The data collapse to a common curve with proper rescaling, indicating
that the depolarization is dominated by coherent spin-spin interactions.
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Fig. 1. Penning trap quantum simulator. (A) A cross-sectional illustration of
the Penning trap (not to scale). The orange electrodes provide axial confine-
ment and the rotating wall potential.The 4.5 Tmagnetic field is directed along
the z axis.The blue disk indicates the 2D ion crystal. Resonant Doppler cooling
is performed with the beams along z and y. The spin state–dependent optical
dipole force (ODF) beams enter ±10° from the 2D ion plane. Resonant micro-
wave radiation for coupling ground states j↑i and j↓i is delivered through a
waveguide. State-dependent fluorescence is collected through the pair of imaging
objectives, where the bright state corresponds to j↑i. (B) Coulomb crystal

images in a frame rotating at w r with
9Be+ ions in j↑i, with the number of ions N

indicated. (C) The typical experiment pulse sequence, composed of cooling laser
pulses (blue),microwavepulses (gray), andODF laser pulses (green).Coolingand
repumping initialize each ion in j↑i, and then amicrowave π/2 pulse prepares the
spins along the x axis. Suddenly switching onH

^
I initiates the non-equilibrium spin

dynamics. The microwave π pulse implements a spin echo, reducing dephasing
frommagnetic field fluctuations andODF laser light shifts. State readout consists
of a final global rotation and fluorescence detection. The final microwave pulse
area and phase are chosen to measure the desired spin projection.
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Interpretation

connection with spin squeezing 

[Wineland, Bollinger, Itano, Heinzen - Phys. Rev. A, 1994]
[Kitagawa, Ueda - Phys. Rev. A, 1993]
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= 1 + 2hn̂exci � 2
p

hn̂exci(1 + hn̂exci)
<latexit sha1_base64="lE9X1VkBV5yOhCuCdYxS8vwRhzY="></latexit>

[Sørensen,  Mølmer - Phys. Rev. Lett., 2001]
[Sørensen, Duan, Cirac, Zoller - Nature, 2001]

• experimentally measurable!

[Bohnet, Sawyer, Britton, … Bollinger - Science, 2016]
[Muessel, Strobel, Joos, Nicklas, Stroescu… - Science APB, 2013]

⇢̂A,B =
e��effĤA,B

ZA,B
<latexit sha1_base64="dfUJWyA5H/WvZ56W3a9FmpyzoZ0="></latexit>

Modular Hamiltonian 

�e↵ = 2arctanh

 
1p

1 + 4fAfBhn̂exci

!

<latexit sha1_base64="jOmJqBajO8BnuornHlG5DXQ14ik="></latexit>

effective temperature

`heating  up' the two subsystems, continuously accumulating 
entanglement
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• known witness of many-particle entanglement
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Spatially decaying interactions

Kač normalization

Fourier representation:

• Time-dependent Holstein-Primakoff

˜̂
H(t) = ˜̂

H0(t) + Ĥsw(t)
<latexit sha1_base64="5diEtm4MH9ffIE0ntb8HhGRkyig="></latexit>

collective modek = 0
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collective Hamiltonian

Lerose et al., PRL ‘18, PRB ‘19

(to get a finite dynamical time scale)

—> Many-body problem!



Suppression of quasiparticle production

[cf. Mori - Journ. Phys. A, 2018]

• Squeezing-induced entanglement dominates against quasiparticle-induced entanglement

• the system remains trapped within a small portion of the full Hilbert space
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Figure 24: The Fourier transform of the couplings is plotted for different values of ↵ computed numerically for
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Collective squeezing vs Quasiparticle propagation

• Squeezing-induced entanglement dominates against quasiparticle-induced entanglement
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/
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N , in order to highlight the validity of the

expansion in Eq. (36).

thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .
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.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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dynamical critical point, due to the exponential growth
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the DPT, corresponding to the separatrix in the classical
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lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-
pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the

spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
(ED) results are perfectly reproduced by our analytical cal-
culation up saturation at the Ehrenfest time tEhr s

p
N
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6 8 10 12 14 16 18 20

S
N
/2
(t
)

J t

hf = 0.5J

N = 50
N = 100
N = 200
N = 400

Analytical

Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G
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N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by
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N .
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Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
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a general quench], determines the time-evolution of the
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dynamical critical point, due to the exponential growth
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lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/
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N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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Ĥ = � J

N↵,N

X

i 6=j

ŝ
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N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i
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i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .
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with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
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N , in order to highlight the validity of the

expansion in Eq. (36).
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the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
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Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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x
j

|ri � rj |↵
� h

X

i

ŝ
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-
pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the

spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
(ED) results are perfectly reproduced by our analytical cal-
culation up saturation at the Ehrenfest time tEhr s

p
N

for generic quenches [Fig. 1 (bottom) and Fig. 3(a)] and

Numerical simulations by MPS-TDVP 
(converged with bond dimension D=128)
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = � J

N↵,N

X

i 6=j

ŝ
x
i ŝ
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j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
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Ġ
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Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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quench dynamics from h0 = 0 to hf = 2J , for various bipar-
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.
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In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
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initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98

Figure 4. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP � 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s
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N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
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It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
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QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
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Figure 4. Entanglement entropy dynamics SNA(t) after a
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fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian
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where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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Figure 3. Growth in time of the half-system entanglement
entropy SN/2(t). The initial state | 0i = |!! · · · !i is
evolved with the Hamiltonian (7). Top: Fully connected
model ↵ = 0. Analytical results using Eq. (2) (black lines)
are compared with exact diagonalization data for increasing
system sizes N = 20÷800. (a.) For a shallow quenchh0 = 0 !
hf = 0.2J , numerical results follow the logarithmic growth up
to tEhr s

p
N , where they saturate to SN/2 s logN , see also

Fig. 1 for a deep quench to hf = 2J . (b.) For the critical
quench to hf = hc = J/2, SN/2(t) grows linearly in time
before tEhr s logN with a slope �hc = J in agreement with
the analytical prediction (see the main text). (a), (b) and the
plot in Fig. 1 correspond qualitatively to green, blue and red
trajectories portrayed in Fig. 2, respectively. Bottom: Slowly
decaying interactions 0  ↵  1 with hf = 2J . The formula (2)
— exact for the infinite-range limit (black line) — is compared
with MPS-TDVP computations for N = 20 ÷ 80 with bond
dimension D = 64 Preliminary data. The logarithmic growth
of SN/2(t) is dominated by the contribution of collective spin
squeezing, see the main text. (c.) For ↵ = 0.1, Tpre-th > tEhr
and the entanglement growth is entirely described by the
infinite-range result. (d) For ↵ = 0.7, Tpre-th < tEhr and
corrections due to spin waves gradually set in before saturation.

at all possible momenta k, generally expressed (up to
O(1/

p
N) terms) as [79]

ê
H(t) ' ê

H0(t)�
X

k 6=0

ef↵,k

Jqq(✓,�)

q̃kq̃�k

2

+ Jpp(✓,�)
p̃kp̃�k

2
+ Jqp(✓,�)

q̃kp̃�k + p̃kq̃�k

2

�
, (5)

where ef↵,k = 1
N↵,N

P
j( 6=i)

e�ik·(rj�ri)

|rj�r1|↵ is proportional to
the Fourier transform of the interactions, J ’s are coeffi-
cients depending also on ✓(t), �(t) and the collective-mode
Hamiltonian eH0(t) accounts for the infinite-range part
ef↵,0 �k,0 ⌘ �k,0 of the interaction ef↵,k. eH0(t) describes
the dynamics of collective spin fluctuations Q̂ ⌘ q̃0 and
P̂ ⌘ p̃0 as detailed above, and conserves the bosonic occu-
pation numbers n̂k 6=0 ⌘ (q̃kq̃�k + p̃kp̃�k � 1)/2 of all the

spin-wave modes with finite wavelength [80]. As is evident
in Eq. (5), the dynamical excitation of spin waves with fi-
nite wavelengths for ↵ > 0 is controlled by the strength of
the finite-range part ef↵,k 6=0 of the interaction, leading to
corrections to the equivalent infinite-range entanglement
growth. The following estimate can be derived for ↵ < d

[69] | ef↵,k 6=0|  const ⇥ 1
(|k|L)� , with � ⌘ Min(d � ↵, 2)

(for ↵ = d the power-law is replaced by a logarithm).
This bound implies that for all fixed k 6= 0, the coupling
ef↵,k is vanishingly small in thermodynamic limit L ! 1
whenever ↵  d, as the associated number of bosons is
an approximate constant of motion,

���
D⇥

n̂k 6=0,
ê
H(t)

⇤E��� 
const
(|k|L)� . (6)

Therefore, there exists a long pre-thermalization time scale
Tpre-th s N

�/d, during which the dynamical excitation of
spin waves with finite wavelengths is suppressed (cf. the
results of Ref. 81) [82]. We thus conclude that long-range
interacting spin systems with ↵  d generically exhibit
logarithmic growth of entanglement entropy, dominated
by non-linear collective spin-squeezing, up to a divergent
time scale in the thermodynamic limit.

Numerical simulations.— We test all our analytical
predictions in paradigmatic one-dimensional long-range
quantum Ising chains, described by the Hamiltonian

Ĥ = � J

N↵,N

NX

i<j

�̂
x
i �̂

x
j

|i� j|↵ � h

NX

i

�̂
z
i , (7)

where i, j = 1, . . . , N , �̂x,z
i are Pauli matrices, h is a global

transverse magnetic field and N↵,N is the Kač rescaling
factor introduced above. The out-of-equilibrium behav-
ior of this model has been widely studied theoretically
[63, 83–87] and experimentally [88]. add ref In the case
of a quantum quench in the transverse field h0 ! hf , it
is characterized by a dynamical phase transitions (DPT)
at hc. For ↵ ! 0, the semi-classical trajectories may
have paramagnetic or ferromagnetic character — distin-
guished by the (non-)vanishing time-averaged magnetiza-
tion hSx(t)i — and are separated by a critical trajectory
(separatrix ), as illustrated in Fig. 2.

We compare the predictions of our general formula (2)
with the results of numerical computations at finite N .
For the sake of illustration, we focus here on the initial
state | 0i = |!! · · · !i i.e., one of the two ground
states of the Hamiltonian (7) for h0 = 0. As Figs. 1 and 3
show, in all cases the finite-size numerical data are close
to the corresponding analytical curves for t  tEhr(N). In
the fully-connected limit ↵! 0, equivalent to the Lipkin-
Meshov-Glick model [89], our theoretical approach is exact
in the thermodynamic limit and the exact diagonalization
(ED) results are perfectly reproduced by our analytical cal-
culation up saturation at the Ehrenfest time tEhr s

p
N

for generic quenches [Fig. 1 (bottom) and Fig. 3(a)] and

• Appreciable (bounded) contribution of long-wavelength quasiparticles
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Numerical simulations have shown that the growth in time of entanglement after a sudden quantum
quench typically becomes very slow when interactions are long-ranged, even in the absence of disorder.
In this Letter, we unveil the general mechanism underlying this counter-intuitive phenomenon. We
first demonstrate that the evolution of entanglement entropy in infinite-range spin systems can be
computed analytically in terms of the time-dependent collective spin squeezing, and is governed
by the structure of underlying semiclassical trajectories, leading to a universal logarithmic growth.
Hence, by establishing explicit bounds on pre-thermalization time scales, we show how the slowness of
entanglement growth extends to systems with slowly-decaying interactions. All our analytical results
agree with exact numerical computations for quantum Ising chains with long-range interactions.
Our findings establish a novel theoretical paradigm for entanglement dynamics in the presence of
long-range interactions, and are directly related to experimental measurements of entanglement
entropy in notable platforms, including atomic condensates, cavity-QED systems and trapped ions.

Introduction.— It is by now well established that a large
body of information about the non-equilibrium dynamics
of quantum many-body systems, the scrambling of their
quantum information, and the complexity of their nu-
merical simulations can be inferred from the evolution of
entanglement [1–10]. A paradigm for these studies is rep-
resented by the growth of bipartite entanglement entropy
S(t) after a sudden quantum quench. In the presence of
local interactions, S(t) is generically expected to obey a
volume law after a linear increase in time [11, 12] AL: cite
other work on random unitary circuits [2–4, 13].
However, the presence of (exact or approximate) spatially
localized conserved quantities results in a dramatically
slower growth of S(t), as occurs in the presence of strong
disorder [6, 14, 15] [? ] or sufficiently complex interac-
tions [16–18] AL: cite nat phys calabrese, stark mbl.
In this context, many-body localized or quasi-localized
dynamics can be characterized by a strongly sublinear
increase of S(t), in most cases logarithmically slow [6].

A number of recent studies [19–21] have reported numer-
ical evidence of a logarithmic growth in time of bipartite
entanglement entropy in long-range interacting quantum
spin chains, which is reminiscent of the phenomenology of
many-body localization, despite the absence of static or
configurational disorder. A connection has been suggested
between this occurrence and the ergodicity breaking which
takes place in the infinite-range limit [20], where the
full permutational symmetry constrains the wavefunction
within a small sector of the full Hilbert space. However,
clear theoretical understanding of the time-dependence
of entanglement and its slowdown is apparently lacking.

In this Letter, we identify the mechanism which gov-
erns the growth of entanglement in long-range interacting
spin systems, which we schematically illustrate in Fig. 1.
We establish the analytical connection between the von
Neumann entanglement entropy S and the number hn̂exci
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<latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit><latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit><latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit><latexit sha1_base64="WpQ3J7Hq/47tiI5HLpaevLHFKVI=">AAAB9XicbVC7TsNAEDyHVwivACXNiQiJKrIREjRIETSUQZCHlFjR+bIJp5zP1t0aFFn5BFqo6BAt30PBv3A2LiBhqtHMrnZ2glgKg6776ZSWlldW18rrlY3Nre2d6u5e20SJ5tDikYx0N2AGpFDQQoESurEGFgYSOsHkKvM7D6CNiNQdTmPwQzZWYiQ4Qyvd4oU7qNbcupuDLhKvIDVSoDmofvWHEU9CUMglM6bnuTH6KdMouIRZpZ8YiBmfsDH0LFUsBOOnedQZPUoMw4jGoKmQNBfh90bKQmOmYWAnQ4b3Zt7LxP+8XoKjcz8VKk4QFM8OoZCQHzJcC9sB0KHQgMiy5ECFopxphghaUMa5FRNbSsX24c1/v0jaJ3XP8pvTWuOyaKZMDsghOSYeOSMNck2apEU4GZMn8kxenEfn1Xlz3n9GS06xs0/+wPn4BnVGkf4=</latexit>

t
<latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit><latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit><latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit><latexit sha1_base64="wrVbK2dwNocNTuUIUZZ7SEtPSz4=">AAAB83icbVC7SgNBFJ2NrxhfUUubwSBYhV0RtAzaWCZgHpAsYXZyE4fMzi4zd4QQ8gW2WtmJrR9k4b84u26hiac6nHMv99wTpVIY9P1Pr7S2vrG5Vd6u7Ozu7R9UD486JrGaQ5snMtG9iBmQQkEbBUropRpYHEnoRtPbzO8+gjYiUfc4SyGM2USJseAMndTCYbXm1/0cdJUEBamRAs1h9WswSriNQSGXzJh+4KcYzplGwSUsKgNrIGV8yibQd1SxGEw4z4Mu6Jk1DBOagqZC0lyE3xtzFhsziyM3GTN8MMteJv7n9S2Or8O5UKlFUDw7hEJCfshwLVwDQEdCAyLLkgMVinKmGSJoQRnnTrSukorrI1j+fpV0LuqB463LWuOmaKZMTsgpOScBuSINckeapE04AfJEnsmLZ71X7817/xktecXOMfkD7+MbgE+RfQ==</latexit>

NB
<latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit>

NA
<latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit>

NA
<latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit><latexit sha1_base64="ZdW/XwPbpJlTDkL7aM/DUs1ow4k=">AAAB9XicdVDLTgJBEJz1ifhCPXqZSEw8kVkeAW+oF08GozwSIGR2aHDC7CMzvRpC+ASvevJmvPo9HvwXhxUTNVqnSlV3urq8SEmDjL05C4tLyyurqbX0+sbm1nZmZ7dhwlgLqItQhbrlcQNKBlBHiQpakQbuewqa3uhs5jdvQRsZBtc4jqDr82EgB1JwtNLVRe+kl8mynFsquKxMWa6YZ6UKs6SSLxy7JermWIIsmaPWy7x3+qGIfQhQKG5M22URdidcoxQKpulObCDiYsSH0LY04D6Y7iSJOqWHseEY0gg0lYomInzfmHDfmLHv2Umf44357c3Ev7x2jINKdyKDKEYIxOwQSgXJISO0tB0A7UsNiHyWHKgMqOCaI4KWlAthxdiWkrZ9fD1N/yeNfM61/LKYrZ7Om0mRfXJAjohLyqRKzkmN1IkgQ3JPHsijc+c8Oc/Oy+fogjPf2SM/4Lx+AOhakks=</latexit>

NB
<latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit><latexit sha1_base64="CLH6WjaT37mqNXOqrTCUrqiczjM=">AAAB9XicdVDLTgJBEJzFF+IL9ehlIjHxRGZZBbwRvHgyGOWRACGzQ4MTZx+Z6dUQwid41ZM349Xv8eC/OCAmarROlarudHX5sZIGGXtzUguLS8sr6dXM2vrG5lZ2e6dhokQLqItIRbrlcwNKhlBHiQpasQYe+Aqa/s3p1G/egjYyCq9wFEM34MNQDqTgaKXL8161l82xfKnseaxAWd47LhbLniXs2HNPGHXzbIYcmaPWy753+pFIAghRKG5M22UxdsdcoxQKJplOYiDm4oYPoW1pyAMw3fEs6oQeJIZjRGPQVCo6E+H7xpgHxowC304GHK/Nb28q/uW1ExyUu2MZxglCKKaHUCqYHTJCS9sB0L7UgMinyYHKkAquOSJoSbkQVkxsKRnbx9fT9H/SKORdyy+OcpXqvJk02SP75JC4pEQq5IzUSJ0IMiT35IE8OnfOk/PsvHyOppz5zi75Aef1A/Z2klQ=</latexit>
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Figure 3. Logarithmic growth in time of the half-system
entanglement entropy SN/2 after a quantum quench above
(top) and below (bottom) the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50 ÷ 800. The
exact diagonalization results follow the logarithmic growth
up to tEhr s

p
N , where they saturate to SN/2 s logN . The

inset shows the same data with SN/2 rescaled by logN and
time by

p
N .

ations in Eq. (30) evolve according to
�
��

��

Ġ
QQ = 4J cos ✓ sin� cos�GQQ + 4J cos 2�GQP

Ġ
PP = �4J cos ✓ sin� cos�GPP

� 4J cos2 � sin2 ✓GQP

Ġ
QP = �2J cos2 � sin2 ✓GQQ + 2J cos 2�GPP

.

(49)

with ✓ = ✓(t) and � = �(t) determined by Eq. (48).
These equations are exact in the limit N ! 1, while

finite-size correction occur over the Ehrenfest time scale
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Figure 3. Linear growth in time of the half-system entan-
glement entropy SN/2 at the dynamical critical point. We
compare our general formula (34) with the exact numerical
computation for increasing system sizes N = 50÷ 400. Before
the Ehrenfest time tEhr s logN , numerical data for SN/2 are
accurately reproduced by the analytical result (34) marked by
the dotted line with a slope �hc = J . This linear regime is
followed by saturation to a value s logN .

trajectory. For generic quenches tEhr s
p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).

At finite N , the entanglement entropy is bounded and
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the Ehrenfest time tEhr s logN , numerical data for SN/2 are
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tEhr, which depends on the nature of the semiclassical
trajectory. For generic quenches tEhr s

p
N , while at

the DPT, corresponding to the separatrix in the classical
phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
number of collective excitations hn̂exc(t)i in Eq. (32) after
a quantum quench.

In Figs. 2, 3 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 96. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
G

QP (t = 0) = 0 and G
QQ(t = 0) = G

PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
the Hamiltonian (46) with h = hf above, below and at
the critical dynamical point hc = J/2. As the plots illus-
trate, in all cases the finite-size numerical result quickly
converges onto the analytical result based on our gen-
eral formula for t  tEhr. For quenches above and below
hc, the entanglement entropy increases logarithmically
SA s log t before tEhr s

p
N , see Fig. 2. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 3. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2

p
hc(J � hc).
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Figure 4. Entanglement entropy dynamics SNA(t) after a
quench dynamics from h0 = 0 to hf = 2J , for various bipar-
titions with fractions of spins fA = NA/N = 0.05 ÷ 0.4 and
fixed size N = 200. Analytical results from Eq. (34) (full
lines) are compared with exact numerical results (dots). In
the inset, SNA � 1/2 log fAfB is plotted as a function of the
rescaled time t/

p
N , in order to highlight the validity of the

expansion in Eq. (36).

At finite N , the entanglement entropy is bounded and
thus always saturates to a finite value, as in Eq. (45).
For NA = N/2 this corresponds to log

p
N , as shown in

the inset of Fig. 2. Conversely, in Fig. 4, we plot the
entanglement entropy dynamics for various fractions of
spins fA and we compare it with the exact results at fixed
N . The latter reproduces the former up to tEhr, when it
saturates to s 1/2 logNA.

We emphasize that all the phenomenology exemplified
in Figs. 2, 3 and 4, as well as the quality of the agreement
between the exact numerics and our analytical results
do not depend at all on the specific choice of the LMG
Hamiltonian (46), nor on the specific choice of pre- and
post-quench parameters.

VI. SPATIALLY-DECAYING INTERACTIONS

In this Section, we generalize the previous statements
concerning entanglement entropy growth to spin systems
with slowly-decaying interactions. For the sake of def-
initeness, we focus on long-range transverse field Ising
models in d-dimensional lattices with ferromagnetic cou-
plings that decay algebraically with the distance with an
exponent ↵, described by the Hamiltonian

Ĥ = �
J

N↵,N

X

i 6=j

ŝ
x
i ŝ

x
j

|ri � rj |↵
� h

X

i

ŝ
z
i , (51)

where i, j = 1, . . . , N = L
d label quantum spins of magni-

tude s = 1/2 whose position on the d-dimensional lattice
is denoted ri,j , lattice spacing is taken to be unity, and pe-
riodic boundary conditions are assumed for simplicity.98
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phase space, it acquires a logarithmic dependence tEhr s
logN . Equations (49) are a set of linear time-dependent
differential equations and their numerical integration with
the appropriate initial conditions [given by Eq. (24) for
a general quench], determines the time-evolution of the
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a quantum quench.

In Figs. 3, 4 we compare the predictions of our general
formula (34) with the results of exact numerical compu-
tations at finite N , obtained following the decomposition
in Ref. 100. For the sake of definiteness, we consider as
initial state one of the two ground states of the LMG
Hamiltonian (46) for h0 = 0 , e.g.

| 0i = |!! · · · !i . (50)

It corresponds to the initial conditions ✓0 = ⇡/2, �0 = 0,
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PP (t = 0) = 1/2 in
Eqs. (48), (49). The initial state | 0i is then evolved via
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trate, in all cases the finite-size numerical result quickly
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eral formula for t  tEhr. For quenches above and below
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N , see Fig. 3. In turn, at the

dynamical critical point, due to the exponential growth
of the collective excitations, it increases linearly in time
as SA s �hct before tEhr s logN , see Fig. 4. For this
Hamiltonian, the eigenvalue of the instability matrix of
the unstable fixed point ✓ = 0 is �hc = 2
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Figure 1. Entanglement dynamics and collective spin-
squeezing in long-range quantum spin systems. (a) The system
is partitioned into two blocks of NA and NB spins-1/2, ini-
tially fully polarized. (b) Collective spins of the two blocks,
on spheres of radii NA/2 and NB/2, with quantum uncer-
tainty of transverse components, of relative width 1/

p
NA,B

respectively. (c) Collective spin in the factorized initial state,
represented on a sphere of radius N/2. (d) Collective spin
squeezing after a quench makes the two blocks increasingly
correlated (entangled). The slow rate of squeezing after non-
critical quenches determines the slow growth of entanglement,
as explained in the main text. (e) The analytical formula
derived in this Letter accurately describes the growth of en-
tanglement entropy until saturation (here, quantum quench
from the ferromagnetic to the paramagnetic phase of a fully-
connected quantum Ising model). The mechanism illustrated
in this figure governs entanglement dynamics in generic quan-
tum spin systems with slowly-decaying interactions.

of quantum collective excitations. The latter quantity, in
turn, is directly related to collective spin-squeezing [22],

• Entanglement entropy (bound) accessible experimentally 

2.  connection between          and spin squeezing

• Quantum Information 

SA(t)
<latexit sha1_base64="YeF5663llYHzcSMXI4Lq4XZYgXw=">AAAB+HicbVC7TsNAEDyHVwivACXNiQgpNJENSFAGaCiDIA8psaLzZROOnM/W3RopWPkHWqjoEC1/Q8G/YBsXkDDVaGZXOzteKIVB2/60CguLS8srxdXS2vrG5lZ5e6dlgkhzaPJABrrjMQNSKGiiQAmdUAPzPQltb3yZ+u0H0EYE6hYnIbg+GykxFJxhIrVu+udVPOyXK3bNzkDniZOTCsnR6Je/eoOARz4o5JIZ03XsEN2YaRRcwrTUiwyEjI/ZCLoJVcwH48ZZ2ik9iAzDgIagqZA0E+H3Rsx8Yya+l0z6DO/MrJeK/3ndCIdnbixUGCEonh5CISE7ZLgWSQ1AB0IDIkuTAxWKcqYZImhBGeeJGCW9lJI+nNnv50nrqOYc1+zrk0r9Im+mSPbIPqkSh5ySOrkiDdIknNyTJ/JMXqxH69V6s95/RgtWvrNL/sD6+AY3gZL1</latexit>

1. analytical understanding of           beyond the short-range paradigm 
• collective spin squeezing gives dominant contribution

• ‘efficiency’ of classical simulations: TDVP, CTWA etc
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• long prethermal regime (nonergodic behavior);



Perspectives: entanglement dynamics in collective models 

• chaotic semi-classical models

Dicke model

Kicked top

Kolmogorov-Sinai entropy

[Zurek, Paz - Physica D: Nonlinear Phenomena, 1995]

• multiple collective degrees of freedom (Dicke models etc)
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