

Near Field Interferometry with Large Particles

Alessio Belenchia

Queen's University Belfast

Trieste Junior Quantum Days TCTP, Trieste Trieste, 24-26 July 2019

AB, G. Gasbarri, R. Katelbeck, H. Ulbricth and M. Paternostro, arXiv.1907.04127

Near Field Interferometry with Large Particles

Alessio Belenchia

Queen's University Belfast

Trieste Junior Quantum Days TCTP, Trieste Trieste, 24-26 July 2019

Alessio Belenchia

Queen's University Belfast

Trieste Junior Quantum Days TCTP, Trieste Trieste, 24-26 July 2019

- 1. Coherent grating for large particles
- 2. Decoherence effects of Grating Scattering and Absorption

Large (particles) with respect to what?

$kR \ge 1$

Take at home message:

Increasing the mass of the particles can lead outside the range of validity of Rayleigh approximation and calls for a accurate analysis of grating decoherent effects using Mie scattering theory

General Idea: coherent and incoherent masks

General Idea: coherent and incoherent masks

General Idea: coherent and incoherent masks

$$T(z, z') = \exp\left[-\frac{i}{\hbar} \int_0^{\tau_{int}} d\tau (V(z, \tau) - V(z', \tau))\right]$$

$$R(z, z') = \exp \int_0^{\tau_{int}} d\tau \mathscr{L}(z, z')$$

$$\tilde{T}(z,p) = \int dq \mathcal{R}(z,p-q) \mathcal{T}_{\rm coh}(z,q)$$

$$\tilde{T}(z,p) = \int dq \mathcal{R}(z,p-q) \mathcal{T}_{\rm coh}(z,q)$$

$$\tilde{T}(z,p) = \int dq \mathcal{R}(z,p-q) \mathcal{T}_{\rm coh}(z,q)$$

$$\mathcal{T}_{\rm coh} = \frac{1}{2\pi\hbar} \sum_{n} e^{2\pi i n z/d} \int ds e^{i q s/\hbar} B_n(s/d)$$

$$\tilde{T}(z,p) = \int dq \mathcal{R}(z,p-q) \mathcal{T}_{\rm coh}(z,q)$$

$$\tilde{T}(z,p) = \frac{1}{2\pi\hbar} \sum_{n} e^{2\pi i n z/d} \int ds e^{i p s/\hbar} \tilde{B}_n(s/d)$$

$$\tilde{T}(z,p) = \frac{1}{2\pi\hbar} \sum_{n} e^{2\pi i n z/d} \int ds e^{i p s/\hbar} \tilde{B}_{n}(s/d)$$

$$\tilde{B}_n(\xi) = \sum_j B_{n-j}(\xi) R_j(\xi)$$

$$R_n(\xi) = \frac{1}{d} \int_{-d/2}^{d/2} dx R(x - \xi d/2, x + \xi d/2) \exp(-2\pi i n x/d)$$

$$\tilde{B}_n(\xi) = \sum_j B_{n-j}(\xi) R_j(\xi)$$

$$w(z) = \frac{m}{\sqrt{2}\sigma_p(t_1 + t_2)} \sum_n \tilde{B}_n \left(\frac{nt_1t_2}{t_T(t_1 + t_2)}\right) \exp\left(\frac{2\pi inz}{D} - \frac{2\pi^2 n^2 \sigma_z^2 t_2^2}{d^2(t_1 + t_2)}\right)$$

Coherent grating for large particles

Use (longitudinal) eikonal approximation

$$\langle z | \psi \rangle \rightarrow \exp(i\phi_0 \cos^2 kz) \langle z | \psi \rangle$$

$$\phi(z) = \frac{1}{\hbar} \int_{\tau} dt V(z, t) = \phi_0 \cos^2 kz$$

Coherent grating for large particles

 $kR \ll 1$

Use (longitudinal) eikonal approximation

$$\langle z | \psi \rangle \rightarrow \exp(i\phi_0 \cos^2 kz) \langle z | \psi \rangle$$

$$\phi(z) = \frac{1}{\hbar} \int_{\tau} dt V(z, t) = \phi_0 \cos^2 kz$$

S. Nimmrichter, Macroscopic matter wave interferometry. Springer, 2014

Coherent grating for large particles $kR \sim 1$

The light-induced forces acting on the dielectric particle can be obtained by integrating the electromagnetic stress-energy tensor over a spherical surface surrounding the particle.

$$\begin{aligned} \frac{F_{z}(z)}{I_{0}k^{-2}c^{-1}} &= -(kR)^{4} \sum_{\ell=1}^{\infty} \sum_{m=\pm 1} \operatorname{Im} \left[\ell(\ell+2) \sqrt{\frac{(\ell-m+1)(\ell+m+1)}{(2\ell+3)(2\ell+1)}} \right. \\ &\times \left(2a_{\ell+1,m}a_{\ell m}^{*} + a_{\ell+1,m}A_{\ell m}^{*} + A_{\ell+1,m}a_{\ell m}^{*} + 2b_{\ell+1,m}b_{\ell m}^{*} + b_{\ell+1,m}B_{\ell m}^{*} \right. \\ &+ B_{\ell+1,m}b_{\ell m}^{*} \right) + m(2a_{\ell,m}b_{\ell m}^{*} + a_{\ell,m}B_{\ell m}^{*} + A_{\ell,m}b_{\ell m}^{*}) \bigg], \end{aligned}$$

Longitudinal force on a dielectric sphere in vacuum

$$F_z(z) = -F_0 \sin 2kz$$

$$V(z) = -(F_0/2k)\cos 2kz$$

$$\phi_0 = \frac{8F_0 E_L}{\hbar c \epsilon_0 a_L k \left| E_0 \right|^2}$$

S. Nimmrichter, Macroscopic matter wave interferometry. Springer, 2014

J. Barton, D. Alexander and S. Schaub, *Theoretical determination of net radiation force* and torque for a spherical particle illuminated by a focused laser beam ,Journal of Applied Physics 66 (1989)

Coherent grating for large particles $kR \sim 1$

Incoherent Effects: Scattering

$$\begin{aligned} \mathscr{L}[\rho_{S}] &= |\alpha|^{2} \int d\mathbf{k} \delta(\omega_{k} - \omega_{0}) \left(2\mathcal{T}_{\mathbf{k}c}(\hat{r}) \rho_{S} \mathcal{T}_{c\mathbf{k}}^{*}(\hat{r}) - \left\{ |\mathcal{T}_{\mathbf{k}c}(\hat{r})|^{2}, \rho_{S} \right\} \right) \\ \mathcal{T}_{\mathbf{k},c}(\hat{\mathbf{r}}) &= \int d\mathbf{k}' \langle c \, | \, \mathbf{k}' \rangle \mathcal{T}_{\mathbf{k}',\mathbf{k}}^{*}(\hat{\mathbf{r}}) \end{aligned}$$

Incoherent Effects: Scattering

$$\mathscr{L}[\rho_{S}] = |\alpha|^{2} \int d\mathbf{k} \delta(\omega_{k} - \omega_{0}) \left(2\mathscr{T}_{\mathbf{k}c}(\hat{r})\rho_{S}\mathscr{T}_{c\mathbf{k}}^{*}(\hat{r}) - \left\{ |\mathscr{T}_{\mathbf{k}c}(\hat{r})|^{2}, \rho_{S} \right\} \right)$$

$$\langle z | \rho | z' \rangle \rightarrow R(z, z') \langle z | \rho | z' \rangle$$

$$\langle z | e^{\mathscr{L}t} \rho | z' \rangle = \exp\left\{-\int dt |\alpha|^2 \int d\mathbf{k} \delta(\omega_k - \omega_0) \left[-2\mathscr{T}_{\mathbf{k}c}(z)\mathscr{T}^*_{c\mathbf{k}}(z') + |\mathscr{T}_{\mathbf{k}c}(z)|^2 + |\mathscr{T}_{\mathbf{k}c}(z')|^2\right]\right\} \langle z | \rho | z' \rangle$$

A.C. Pflanzer, O. Romero-Isart, and J. I. Cirac, Phys. Rev. A 86, 013802 (2012)

Incoherent Effects: Absorption

$$\mathscr{L}(\rho) = \frac{c\sigma_{\text{abs}}}{V_0} |\alpha(t)|^2 \left[\cos(kz)\rho\cos(kz) - \frac{1}{2} \{\cos^2(kz), \rho\} \right]$$

Incoherent Effects: Absorption

S. Nimmrichter, Macroscopic matter wave interferometry. Springer, 2014

Generalized Talbot Coefficients

$$\tilde{B}_{n}(\xi) = \exp(F - c_{abs}/2) \sum_{k=-\infty}^{\infty} \left(\frac{\zeta_{coh}(\xi) + a + c_{abs}/2}{\zeta_{coh}(\xi) - a - c_{abs}/2} \right)^{\frac{n+k}{2}} J_{n+k} \left(\operatorname{sign}(\zeta_{coh} - a - c_{abs}/2) \sqrt{\zeta_{coh}^{2} - (a + c_{abs}/2)^{2}} \right) J_{k}(b)$$

Absorption

$$c_{abs} = n_0(1 - \cos(\pi\xi)) \qquad n_0 = \frac{4\sigma_{abs}}{hc} \frac{E_L}{a_L} \lambda = \frac{I_0}{ck^2 F_0} \sigma_{abs} k^2 \phi_0$$

$$\zeta_{coh} = \phi_0 \sin(\pi\xi)$$

Scattering $a = 2\pi^{2} \int dt \frac{|\alpha|^{2} c}{4\pi^{2} V_{0}} \int d\Omega \, Re \left(f^{*}(\mathbf{k}_{0}, k_{0}\mathbf{n}) f(-\mathbf{k}_{0}, k_{0}\mathbf{n}) \right) \left[(\cos(\pi n_{z}\xi) - \cos(\pi\xi)) \right]$ $b = i \, 2\pi^{2} \int dt \frac{|\alpha|^{2} c}{4\pi^{2} V_{0}} \int d\Omega \, Im \left(f^{*}(\mathbf{k}_{0}, k_{0}\mathbf{n}) f(-\mathbf{k}_{0}, k_{0}\mathbf{n}) \right) \left[\sin(\pi n_{z}\xi) \right]$ $F = 2\pi^{2} \int dt \frac{|\alpha|^{2} c}{4\pi^{2} V_{0}} \int d\Omega |f(\mathbf{k}_{0}, k_{0}\mathbf{n})|^{2} \left[\left(\cos(\pi n_{z}\xi) \cos(\pi\xi) + \sin(\pi n_{z}\xi) \sin(\pi\xi) \right) - 1 \right]$

Let's take a Look

Laser: $\lambda = 2d = 354 \times 10^{-9} \text{m}$			
Material: Si			
$\rho_{\rm Si} = 2.3290 \times 10^3 \rm Kg/m^3$	$T = 20 \times$	$10^{-3}{\rm K}$	
Refractive Index at λ : $n = 5.656 + i 2.952$			
Trapping frequency: $\nu = 200 \times 10^3 \text{Hz}$			
Interferometer:			
$d = 177 \times 10^{-9} \mathrm{m}$	$t_1 = 2t_T$	$t_2 = 1.6t_T$	

 ${\bf Table \ 1.} \ {\bf Parameters \ considered \ for \ Si \ spheres.}$

$$R = \left(\frac{3}{4\pi}\frac{m}{\rho_{Si}}\right)^{1/3}$$

$m = 10^6 \mathrm{u}$	$R \sim 5.54 \mathrm{nm}$	$kR \sim 0.098$
$m = 10^8 \mathrm{u}$	$R \sim 25.71 \mathrm{nm}$	$kR \sim 0.46$

J. Bateman, S. Nimmrichter, K. Hornberger and H. Ulbricht, Nature communications 5 (2014) 4788

Conclusions

• Coherent grating is strongly affected by the size of the particles

• Decoherent effects are also strongly affected by the size

- Need to take both aspects into account for the best theoretical modelling of the interference pattern
- Classical limit of the in-coherent effects is not trivial and deserves an in-depth investigation

