Entanglement Distribution via Separable States

\& Incoherent Dynamics

Hannah McAleese

25th July 2019
Trieste Junior Quantum Days

Outline

1) Entanglement Distribution

- Quantum communication
- ED with Separable States

(2) Incoherent Dynamics

- Motivation
- Our approach
(3) Results

Ouantum Communication

The Goal: Quantum Internet

Entanglement Distribution

1 Encoding Operation

CNOT Operation

Entanglement Distribution

2 Send C from A to B

Entanglement Distribution

3 Decoding Operation

CNOT Operation

Entanglement Distribution

Result: A and B are now entangled

Entanglement Distribution

Result: A and B are now entangled

A

This result is still possible when the carrier system is always separable from A and B

Cubitt et al., PRL (2003)

Ouantum Discord

Mixed states: difference between product states

$$
\rho_{A B}=\rho_{A} \otimes \rho_{B}
$$

with no classical or quantum correlations...

- ...and separable states (no entanglement)

$$
\rho_{A B}=\sum_{k} p_{k} \rho_{A}^{k} \otimes \rho_{B}^{k}
$$

Ouantum Discord

$$
\rho_{A B}=\sum_{k} p_{k} \rho_{A}^{k} \otimes \rho_{B}^{k}
$$

- Mixed separable states can still have quantum correlations, e.g. discord

$$
D(A \mid B)=I(A: B)-J(A \mid B)
$$

Ouantum Discord

$$
D(A \mid B)=I(A: B)-J(A \mid B)
$$

Mutual information

- Measures total correlations (relative entropy between state $\rho_{A B}$ and product state $\rho_{A} \otimes \rho_{B}$)
$I(A: B)=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)$

Ouantum Discord

$$
D(A \mid B)=I(A: B)-J(A \mid B)
$$

Generalised conditional entropy

- Measures classical correlations maximum info that can be gained about A by measuring B
$J(A \mid B)=\max _{B_{i}^{i} B_{i}}\left(S\left(\rho_{A}\right)-\sum_{i} p_{i} S\left(\rho_{A}^{i}\right)\right)$

Ouantum Discord

$$
D(A \mid B)=I(A: B)-J(A \mid B)
$$

Discord = how much you disturb the overall state when extracting information
$D(A \mid B) \neq D(B \mid A)$
$D(A \mid B) \geq 0$

Ouantum Discord

In entanglement distribution:

Discord bounds the amount of entanglement gained

Chuan et al., PRL (2012)

$$
\varepsilon_{A: C B}(\beta)-\varepsilon_{A C: B}(\alpha) \leq D_{A B \mid C}(\beta)
$$

After sending C Initial
A HNWMNMNMB
Entanglement

Incoherent Dynamics

Our work:

What if there are imperfections in the encoding and decoding steps?

$$
\begin{gathered}
\rho=U \rho(0) U^{\dagger} \\
\frac{d \rho}{d t}=-i[H, \rho]+\gamma \mathscr{L}(\rho)
\end{gathered}
$$

Incoherent Dynamics

$$
\begin{gathered}
\frac{d \rho}{d t}= \\
\text { namics }
\end{gathered}
$$

H is the Hamiltonian of the CNOT operation: $U_{\mathrm{CNOT}}=e^{-i H t}$

Incoherent dynamics

$$
\mathscr{L}_{A C}(\rho)=2\left(\sigma_{A}^{+} \sigma_{C}^{-}\right) \rho\left(\sigma_{A}^{-} \sigma_{C}^{+}\right)-\left(\sigma_{A}^{-} \sigma_{C}^{+}\right)\left(\sigma_{A}^{+} \sigma_{C}^{-}\right) \rho
$$

$$
-\rho\left(\sigma_{A}^{-} \sigma_{C}^{+}\right)\left(\sigma_{A}^{+} \sigma_{C}^{-}\right)
$$

$$
\sigma^{+}=|1\rangle\langle 0|, \sigma^{-}=|0\rangle\langle 1|
$$

Incoherent Dynamics

$$
\frac{d \rho}{d t}=-i[H, \rho]+\gamma \mathscr{L}(\rho)
$$

Strength of the

incoherent dynamics
$\gamma_{A C} \rightarrow$ Encoding step
$\gamma_{B C} \rightarrow$ Decoding step

Initial State

$\alpha(p)=p \Lambda_{\text {sep }}+(1-p) \Lambda_{\text {ent }}$

Chuan et al., PRL (2012)
Initial Entanglement between A and B

C separable from AB?

How long should the interactions last?

Steady State?

No unique steady state
E.g. for encoding:

$$
\begin{aligned}
& \rho=|000\rangle\langle 000| \longrightarrow \frac{d \rho}{d t}=0 \\
& \rho=|001\rangle\langle 001| \longrightarrow
\end{aligned}
$$

C separable from $A B ?$

How long should the interactions last?

Steady State?

No steady state where

$$
E_{C \mid A B}=0
$$

1.0
0.8
0.6
0.4
0.2

0

separable from

How long should the interactions last?

Steady State?

No steady state where

$$
E_{C \mid A B}=0
$$

How long should the interactions last?

Steady State?

Need to limit interaction time. Focus on case where

$$
0 \leq t \leq 1
$$

C separable from AB?

Which values of $\gamma_{A C}$ and $\gamma_{B C}$ allow for EDSS?

separable from AB?

Which values of $\gamma_{A C}$ and $\gamma_{B C}$ allow for EDSS?

A entangled to BC?

A:BC Entanglement

0.0

A entangled to BC?

A:BC Entanglement Gain

A entangled to $B C$?

A:BC Entanglement Gain

$p=$. Higher initial entanglement \longrightarrow Lower entanglement gain
$p=0$. Focus on $p=0.9$ case

A entangled to $B C$?

A: BC Entanglement Gain

Higher initial entanglement \longrightarrow Lower entanglement gain
$p=0$. Focus on $p=0.9$ case

entanglement?

A entangled to B ?

Measure C

In the case of unitary dynamics, final state:

$$
\begin{gathered}
\rho_{A B C}=\frac{1}{3} \frac{\left|\phi^{+}\right\rangle\left\langle\phi^{+}\right|}{} \quad \begin{array}{c}
\text { Bell state-maximally } \\
\quad \text { entangled }
\end{array}
\end{gathered}
$$

\longrightarrow Try measuring C in the standard basis

A entangled to B ?

Measure C $\quad p=0.9$

A entangled to B ?

Trace out C $p=0.9$

Conclusions

It is possible to generate entanglement between
2 systems without using entanglement, even with incoherent dynamics

In this case:

There are more restrictions on encoding than decoding

Stronger incoherent dynamics can increase $A: B$ entanglement when tracing out C

Thank you:

