Entanglement Distribution via Separable States

& Incoherent Dynamics

Hannah McAleese

25th July 2019 Trieste Junior Quantum Days

Outline

1 Entanglement Distribution

- Quantum communication
- ED with Separable States

2 Incoherent Dynamics

- Motivation
- Our approach

3 Results

The Goal: Quantum Internet

2 Send C from A to B

CNOT Operation

Result: A and B are now entangled

Entanglement Distribution

Result: A and B are now entangled

This result is still possible when the carrier system is always **separable** from A and B

Cubitt et al., PRL (2003)

Quantum Discord

- <u>Mixed states</u>: difference between product states $\rho_{AB} = \rho_A \otimes \rho_B$
 - with no classical or quantum correlations...

…and separable states (no entanglement)

$$\rho_{AB} = \sum_{k} p_k \rho_A^k \otimes \rho_B^k$$

$$\rho_{AB} = \sum_{k} p_k \rho_A^k \otimes \rho_B^k$$

 Mixed separable states can still have quantum correlations, e.g. discord

$$D(A \mid B) = I(A : B) - J(A \mid B)$$

Quantum Discord

$$D(A \mid B) = I(A : B) - J(A \mid B)$$

Mutual information
Measures total correlations (relative entropy between state \(\rho_{AB}\) and product state \(\rho_A \otimes \rho_B \))
I(A: B) = S(\(\rho_A\)) + S(\(\rho_B\)) - S(\(\rho_{AB}\))

Quantum Discord

$$D(A \mid B) = I(A : B) - J(A \mid B)$$

Generalised conditional entropy Measures classical correlations maximum info that can be gained about A by measuring B $J(A \mid B) = \max_{B_i^{\dagger} B_i} \left(S(\rho_A) - \sum_i p_i S(\rho_A^i) \right)$

$$D(A \mid B) = I(A : B) - J(A \mid B)$$

Discord = how much you disturb the overall state when extracting information

$D(A \mid B) \neq D(B \mid A)$

$D(A \mid B) \ge 0$

Quantum Discord

In entanglement distribution:

Discord bounds the amount of entanglement gained Chuan et al., PRL (2012)

$$\varepsilon_{A:CB}(\beta) - \varepsilon_{AC:B}(\alpha) \le D_{AB|C}(\beta)$$

After sending C Initial

Incoherent Dynamics

Our work:

What if there are imperfections in the encoding and decoding steps?

Incoherent Dynamics

$$\frac{d\rho}{dt} = -i[H,\rho] + \gamma \mathscr{L}(\rho)$$

Unitary dynamics H is the Hamiltonian of the CNOT operation: $U_{\text{CNOT}} = e^{-iHt}$

1

Incoherent dynamics $\mathcal{L}_{AC}(\rho) = 2(\sigma_A^+ \sigma_C^-)\rho(\sigma_A^- \sigma_C^+) - (\sigma_A^- \sigma_C^+)(\sigma_A^+ \sigma_C^-)\rho - \rho(\sigma_A^- \sigma_C^+)(\sigma_A^+ \sigma_C^-))$ $\sigma^+ = |1\rangle\langle 0|, \sigma^- = |0\rangle\langle 1|$

Incoherent Dynamics

Strength of the incoherent dynamics

 $\gamma_{AC} \rightarrow$ Encoding step $\gamma_{BC} \rightarrow$ Decoding step

$$\alpha(p) = p\Lambda_{sep} + (1 - p)\Lambda_{ent}$$

Chuan et al., PRL (2012)

Initial Entanglement between A and B

Steady State?

No unique steady state

E.g. for encoding:

Steady State?

Need to limit interaction time. Focus on case where

 $0 \leq t \leq 1$

Which values of γ_{AC} and γ_{BC} allow for EDSS?

Which values of γ_{AC} and γ_{BC} allow for EDSS?

A entangled to BC? A:BC Entanglement 0.0 0.2 γ_{BC} p = 0.90.8 0.16 0.14 *p* = 0.5 0.12 0.0 p = 0.10.2 0.4 γ_{AC}

A entangled to B?

Measure C

In the case of unitary dynamics, final state:

Try measuring C in the standard basis

A entangled to B?

A entangled to B?

It is possible to generate entanglement between 2 systems without using entanglement, **even with incoherent dynamics**

In this case:

There are more restrictions on encoding than decoding

Stronger incoherent dynamics can increase A:B entanglement when tracing out C

Thank you:

Prof Mauro Paternostro

Science **S**

Ireland For what's next

Foundation

Dr Alessandro Ferraro

Thank you for your attention!