

Testing the large-scale limit of

quantum mechanics

Design and Realization of the TEQ experiment – Southampton, June 22nd, 2018

TEQ - Kick off Meeting

Name and Surname	Institution	Signature
James Bain	M2	an
Peter Barker	UCL	PZBack
Angelo Bassi	UniTs	Angels Bi
Max Bazzi	INFN	Meninhand Dani
Matteo Carlesso	UniTs	Mottes Corlesso
Catalina Curceanu	INFN	Caralui an
Luca De Trizio	TUD	1- That
Michael Drewsen	AU	horth
Alessandro Ferraro	QUB	AUT
Giulio Gasbarri	UniTs	

www.tequantum.eu

TEQ is a FET OPEN H2020 project

Oussama Houhou	QUB	Oursonn Howhow
Marta Marchese	QUB	Monta Marchese
Mauro Paternostro	QUB	M PSRO
Antonio Pontin	UCL	hill
Anishur Rahman	UCL	Ang
Muddassar Rashid	UoS	
Ashley Setter	UoS	Areto
Christopher Timberlake	UoS	. Convertine
Hendrik Ulbricht	UoS	Ullu
Andrea Vinante	UoS	Ante Vale
MARKO TOROŠ	UDS	Markin Tong
Thomas Permy	UCL	<i>PE</i>
GIULIO GASBARD	UNTS	Gulio Gostani
CN		

Testing the large-scale limit of

quantum mechanics Design and Realization of the TEQ experiment – Southampton, June 22nd, 2018

20		2*
	-	

Southampton, June 22nd, 2018

Andrea Vinante

Preparing for the TEQ experiment at Southampton

Southampton

Some questions about TEQ experiment

- What is the optimal size of the nanoparticle in order to do relevant (noninterferometric) tests of collapse models ?
- We want/need very low pressure (P<1E-10 mbar) & very low temperature (T<1 K)
 Can we ever cool a levitated nanoparticle in such conditions?
- Can we keep the particle cold when doing measurements? Could a stroboscopic measurement strategy work?

Continuous Spontaneous Localization (CSL)

Schrödinger equation + Stochastic term (collapse noise field)

$$d|\psi_t\rangle = \left[-\frac{i}{\hbar}Hdt + \sqrt{\lambda}\int d^3x (N(\mathbf{x}) - \langle N(\mathbf{x})\rangle_t) dW_t(\mathbf{x}) - \frac{\lambda}{2}\int d^3x (N(\mathbf{x}) - \langle N(\mathbf{x})\rangle_t)^2 dt\right]|\psi_t\rangle$$

2 phenomenological constants (free parameters)

• Correlation Length r_{C}

(N = number density of nucleons, "smeared" over r_{C})

conventional "literature value" $r_{\rm C}$ =10⁻⁷ m

• Collapse rate λ

 $\begin{array}{l} \mbox{Lower bounds (to guarantee collapse at "macroscopic" or "mesoscopic" scale)} \\ \lambda \sim 10^{-16} \mbox{ s}^{-1} @ \ r_C = 10^{-7} \ mbox{m} & following \ Ghirardi, Rimini, Weber (GRW) \\ \lambda \sim 10^{-8} \mbox{ s}^{-1} @ \ r_C = 10^{-7} \ mbox{m} & following \ Adler \end{array}$

Measurable effects

1) Collapse of massive quantum superpositions

2) Indirect effects (non-interferometric)

- X-ray spontaneous emission from free electrons
- Spontaneous heating of materials systems (i.e. solid matter)
- Spontaneous diffusion / force noise in mechanical systems/resonators

Current bounds on CSL parameter space

REGION OF INTEREST for NANOSPHERES!

Momentum kicks

Stochastic driving force

 $\langle E \rangle = k_B T + \Delta E_{CSL} = k_B (T + \Delta T_{CSL})$

S. Nimmrichter et al, PRL 113 020045 (2014)
L. Diosi, PRL 114, 050403 (2015)
A. Vinante et al, PRL 116, 090402 (2016)

CSL-heating on a mechanical resonator

MAXIMIZATION of Signal to Noise (actually Noise to Noise):

High $\tau = \frac{Q}{\omega_0}$ Low Frequency! (opposite as in quantum optomechanics)

Low T

Low $\frac{\eta}{m}$ \longrightarrow 1) Size $\ll r_c$ (coherent) $\eta/m \propto m$ 2) Thickness $L \gg r_c$ ("surface" noise) $\eta/m \propto \rho/L$

$$\eta \propto
ho^2 A$$

Example: CSL heating of a sphere Exact solution for a sphere of radius R (at fixed ρ , Q and f_0)

$$\eta = \frac{(4\pi)^2 \lambda r_C^2 \rho^2 R^2}{3m_0^2} \left[1 - \frac{2r_C^2}{R^2} + e^{-\frac{r_C^2}{R^2}} \left(1 + \frac{2r_C^2}{R^2} \right) \right]$$
$$\Delta T = \frac{\hbar^2 \eta}{2k_B m} \tau$$

Maximum at $R \simeq 2r_C$

NOTE:1) The density is important !2) Sphere is not the best geometry. For given mass, cube is slightly better !

BUT: if only gas damping

Conclusions

- Radius should not be smaller than 200 nm Materials with density higher than SiO₂ would help
- For radius >> 200 nm, bound @ r_c=10⁻⁷ is almost independent of particle size for given P,T

Can we ever thermalize a micro/nanoparticle @ T<1K, P=1E-10 mbar ? (given for granted we can load & trap)

Yes, provided that external heating (for trapping, measuring) is low enough ...

Thermalization curve

Add a continuous power (levitating fields, measurement beam, uncontrolled heat leaks)

Pulsed input power (stroboscopic measurement)

 W_1 (high) for 1 s - W_2 (low) for 1000 s

The TEQ He-3 cryostat

Initial Idea: Dry Dilution Refrigerator

Good: T >10 mK No need for liquid helium (lower running cost) Continuous operation

Bad: Large vibrations from precooler compressor Expensive

Final: Wet He3-sorption Refrigerator

Bad: T >300 mK
Needs liquid helium (higher running cost)
Single shot operation (t>60 hours, rechargeable)
Good: <u>Ultralow vibration operation mode</u>
Cheaper (in the short term...)

Mandatory Requirements

T < 300 mK Single shot hold-time > 60 hours Experimental space: Diameter x Length = 15 x 25 cm UHV compatible vacuum chamber (P<1E-10 mbar) Ultralow vibration mode

Outcome Four companies initially interested Two companies completed the bidding process

Winner: ICE Oxford (UK)

How it works

1 Condensation (Regeneration phase ~ 1-2 hours) 2 Evaporation (Cooling phase t>60 hours)

A similar ICE system (Paris optomech.)

Additional features

UHV

- Low outgassing rate materials
- UHV flanges
- Residual gas pressure < 1E-10 mbar at the experiment (?)

Optical access

- Optical windows
- Optical fibers (?)

Preinstalled wiring

- 10 flexible coaxial lines
- 12 twisted pairs in one bundle

External mechanical isolation

Wiring (current design)

Coaxial lines: meant for ac signals, e.g. Paul trap "rf bias"

- Stainless steel flexible line
- Cryogenic section: switch to NbTi/CuNi matrix shielded twisted (superconducting to minimize Joule + conduction heating)
- Voltage rating 600 V
- SMA connectors on top flange
- 10x, IS IT ENOUGH?

Twisted pairs: meant for dc or low freq signals, e.g. Paul trap "dc bias"

- Constantan, cryogenic section switch to NbTi/CuNi
- Voltage rating should be up to 200 V
- Single bundle / Single Fischer connector on top flange
- 12x, IS IT ENOUGH ?

Heat load due to Paul trap bias

1) Ohmic losses: Heavily suppressed by superconducting wiring

2) Heat conduction through wiring Heavily suppressed by superconducting wiring

3) Dielectric loss heating in the wiring insulation: Dominant mechanism

$$W \simeq rac{1}{2} \delta_L \omega C V_{rf}^2$$

 $\delta_L \simeq 10^{-4}$

For N=10 lines, C≈20 pF

ω/2π (kHz)	V _{rf} (V)	W (μW)
10	100	6
20	200	50
100	1000	6000

For this cryostat W<100 μ W advisable

Mechanical Isolation

Key idea: No vibrations produced inside the cryostat (except helium boiling noise but no mechanical pumps)

Only external noise relevant

The all cryostat will be suspended on a pneumatic mechanical isolator (Newport) Attenuation > 60 dB @ 30 Hz

IS IT ENOUGH?

Seismic noise (using standard figures)

possible Paul trap assembly (parabolic mirror + optical windows)

RF blade electrode

DC blade electrode

DC	DC	DC	DC	DC

Mounted electrodes in a end view:

Price: 450 £/blade

Detectio

n

with Paraboloidal Mirror

Intro to Paraboloidal Mirror

Here r_0 is the radius of curvature, z_0 depth of mirror to the apex, and f is the focal length. The numerical aperture for a lens is defined as:

$$NA = \int_0^{\theta} \sin(\theta') \, d\theta' = 1 - \cos(\theta)$$
$$= 1 - \cos\left(\tan^{-1}\left(\frac{r_0}{f - \frac{f_0}{4f}}\right)\right)$$

NApara[f_, r0_] := 1 - Cos[ArcTan[$\frac{r0}{f - \frac{r0^2}{4 f}}$];

It is worth noting that the maximum NA of 1 is achieved as $\cos(\theta) \rightarrow 0$, $\tan \theta \rightarrow \frac{\pi}{2}$, $r_0 \rightarrow 2f$

DensityPlot[NApara [f, r0], {f, 1, 5},

Detection At the Detector

We can divide the problem into the following parts:

- How much power is scattered by the particle?

- How much power is collected and then detected at the detector?
- How much scattering force generated by the particle?

- And the limits of detection? i.e. What is the temperature sensitivity based on the position sensitivity?

- What is also the force sensitivity based on the above values?

I. How much power is scattered by the particle?

```
Cnst := {hbar \rightarrow 1.05 × 10<sup>-34</sup>, c \rightarrow 3 × 10<sup>8</sup>, n \rightarrow 1.45,
     \epsilon 0 \rightarrow 8.8 \times 10^{-12}, \text{ kB} \rightarrow 1.38 \times 10^{-23}, \text{ h} \rightarrow 6.626 \times 10^{-34}
OurPara := {\lambda \rightarrow 1550 \times 10^{-9}, Radius \rightarrow 50 \times 10^{-9}, \Omega \rightarrow 2\pi 1 \times 10^{3},
    \gamma \rightarrow 2\,\pi\,269 , f0 -> c/ \lambda,~\eta c \rightarrow 0.0005, \omega 0 \rightarrow 2\,\pi f0, NA \rightarrow 0.997,
    \rho \rightarrow 1800, m \rightarrow \rho 4\pi \text{Radius}^3/3, k \rightarrow 2\pi/\lambda, w0 \rightarrow \frac{\lambda}{\pi \text{NA}}, \gamma c \rightarrow \frac{\text{Radius}}{w0}
NovotnyPara := \{\lambda \rightarrow 1064 \times 10^{-9}, \Omega \rightarrow 2\pi 150 \times 10^3, \gamma \rightarrow 2\pi 269, \}
     f0 -> c/\lambda, \etac \rightarrow 0.0005, \omega0 \rightarrow 2\pi f0, Radius \rightarrow 50 \times 10<sup>-9</sup>,
    NA \rightarrow 0.9, PO \rightarrow 70 \times 10<sup>-3</sup>, k \rightarrow \frac{\omega 0}{c}, m \rightarrow 1.14 \times 10<sup>-18</sup>}
TEQpara := {\lambda \rightarrow 1550 \times 10^{-9}, \Omega \rightarrow 2\pi 1 \times 10^3, \gamma \rightarrow 2\pi 269,
     f0 -> c/\lambda, \etac \rightarrow 0.0005, \omegaO \rightarrow 2\pifO, Radius \rightarrow 50 \times 10<sup>-9</sup>,
     NA \rightarrow 0.997, k \rightarrow \omega 0/c, m \rightarrow \rho 4 \pi \text{Radius}^3/3, \rho \rightarrow 1800,
     \Gamma \rightarrow 0.619 ((9\pi) / Sqrt[2]) ((\eta air d^2) / (\rho kB T0)) (Pgas / Radius), Pgas \rightarrow 100 \times 10^{-10},
    \eta \operatorname{air} \rightarrow 18.2 \times 10^{-6}, d \rightarrow 0.375 \times 10^{-9}, T0 \rightarrow 300, w0 \rightarrow \frac{\lambda}{\pi NA}, \gamma c \rightarrow \frac{\operatorname{Radius}}{w0}
 (* Polarizability [1]*)
\alpha := 4 \pi \epsilon 0 \text{ Radius}^3 (n^2 - 1) / (n^2 + 2)
(* Rayleigh Cross Section [1]*)
\sigma \text{scat} := \frac{\alpha^2 \, k^4}{6 \, \pi \, \epsilon \, 0^2}
(* Scatter Power
  The additional parameter \gamma_c,
is a ratio of the beam focal waist w_0 and the particle radius.
*)
PScat := γc σscat I0
IO := \frac{2 \text{ PO NA}^2 \pi}{\lambda^2}
(*\frac{P0 k^2 NA^2}{2 - }*)
PScat //. Cnst //. TEQpara /. {P0 \rightarrow 600 × 10<sup>-3</sup>}
(*PScat//.Cnst//.NovotnyPara/.{P0→ 100 10<sup>-3</sup>,γc→ 1}*)
PScat //. Cnst //. TEQpara /. {P0 \rightarrow 0.5 \times 10<sup>-3</sup>}
4.02284 \times 10^{-7}
3.35237 \times 10^{-10}
```

Therefore, the trapped particle at the focal region will scatter **400 nW** @ $P_0 = 600$ mW. Whilst @ **0.5 mW** of P_0 the scattering is 0.3 nW. For a 50 nm radius particle.

2. How much power is collected and then detected at the detector?

The photon scatter once collect reaches the detector through massive amounts of losses. These losses are:

- γ_{para} , collection of the paraboloidal mirror = NA/2
- $N_{\text{optElements}}$, Number of Optical mirrors = 4
- γ_{mirrors} , efficiency of optical silver mirrors = 0.96
- QE, detector quantum efficiency

From which we get the total detection efficiency (we add an additional loss parameter as not all the light is focussed on to the photodetector [2]):

```
QE := (S 1240) / \lambda (* The Quantum Effiency[3]*)
yTotal := ypara ymirrors<sup>NElements</sup> QE (DetectorArea / MirrorDiameter) //.
   {\gammapara \rightarrow NA/2, \gammamirrors \rightarrow 0.96, NElements \rightarrow 4, S \rightarrow 1, \lambda \rightarrow 1550,
    NA \rightarrow 0.997, DetectorArea \rightarrow 0.3 \times 10<sup>-3</sup>, MirrorDiameter \rightarrow 3 \times 10<sup>-3</sup>}
(*Note: NEPmin refers to Minimum measured NEP,
Rmax is max responsivity, R is Gain output *)
NEP := (NEPmin Rmax) / R //. {Rmax \rightarrow 1, NEPmin \rightarrow 1.55 \times 10<sup>-12</sup>, R \rightarrow 10<sup>5</sup>}
NEPAbs := NEP Sqrt[bandwidth] /. bandwidth \rightarrow 4 \times 10^{6}
OpticalInput := ((1 \times 10^{-3}) / 50) (1 / R) / . R \rightarrow 10^{5}
{"Detector Efficiency",
 \gammaTotal //. Cnst //. TEQpara /. {P0 \rightarrow 0.5 \times 10<sup>-3</sup>, Impedance \rightarrow 50}}
{"Pdet", PScat \gammaTotal //. Cnst //. TEQpara /. {P0 \rightarrow 0.5 \times 10<sup>-3</sup>, Impedance \rightarrow 50}}
{"Pscat", PScat //. Cnst //. TEQpara /. {P0 \rightarrow 0.5 x 10<sup>-3</sup>}}
{"OpticalInput with oscilloscope", OpticalInput // N}
{"NEP<sub>bnd</sub>", NEPAbs // N}
{"Allowed S/N",
 AllowedSN = \frac{\text{PScat}_{\gamma}\text{Total}}{\text{NEPAbs}} //. Cnst //. TEQpara /. {P0 \rightarrow 0.5 × 10<sup>-3</sup>, Impedance \rightarrow 50}}
{"Predicted Temp@ 300 K", PredictedTemp = 300 / AllowedSN × 10<sup>3</sup> "mK"}
{"Predicted Temp@ 300 mK", PredictedTemp = 300 \times 10^{-3} / AllowedSN 10^{6} "\muK"}
{Detector Efficiency, 0.0338719}
{"Pdet", 1.3626138112109088`*^-10}
\{Pscat, 4.02284 \times 10^{-9}\}
{OpticalInput with oscilloscope, 2. \times 10^{-10}}
\{NEP_{bnd}, 3.1 \times 10^{-14}\}
{Allowed S/N, 4395.53}
```

{Predicted Temp@ 300 K, 68.2512 mK} {Predicted Temp@ 300 mK, 68.2512 μ K}

The detection efficiency seems to be 0.03 compared to Jain et al [1] to be 0.0005.

For 500 μ W of incident Power:

Detector NEP@ λ = 0.015 fW/ \sqrt{Hz} Detector Signal = 0.1 nW Scattered Signal = 4 nW NEP@(λ , Bandwidth) = 31 fW

If at signal of 0.1 nW is 300 K then to reach gr bound state at 1 μ K a signal drop of factor 10⁸ needs to be accommodated. The available S/N is 10⁴.

If starting temp is 300 K => 68 mK if starting temp is 300 mK => 68 μ K

 $\rm NEP\; 10^{15}$

0.0155

The question of how small a signal can our current detectors detect can be characterised by Noise Equivalent Power (NEP). For our case the NEP is $0.0155 \text{ fW}/_{a}/\text{Hz}$.

$$3 \times 10^{-7} / \text{Sqrt} [4 \times 10^{6}] // \text{N}$$

1.5 × 10⁻¹⁰
$$\frac{300 \times 10^{-3}}{\frac{0.1 \times 10^{-9}}{31 \times 10^{-15}}} // \text{N}$$

0.000093
3. Noise Power Spectral Density

```
\begin{split} \text{TEQpara} &:= \left\{ \lambda \to 1550 \times 10^{-9}, \ \Omega \to 2 \,\pi \, 1 \times 10^3, \ \gamma \to 2 \,\pi \, 1 \times 10^{-6}, \\ & \text{f0} \to c \, / \,\lambda, \ \eta c \to 0.0005, \ \omega 0 \to 2 \,\pi \, \text{f0}, \ \text{Radius} \to 50 \times 10^{-9}, \ \text{NA} \to 0.997, \\ & \text{P0} \to 0.5 \times 10^{-3}, \ \text{k} \to \omega 0 \, / \,\text{c}, \ \text{m} \to \rho \, 4 \,\pi \, \text{Radius}^3 \, / \, 3, \ \rho \to 1800, \\ & r \to 0.619 \, \left( \left( 9 \,\pi \right) \, / \, \text{Sqrt[2]} \right) \, \left( \left( \eta \text{air } d^2 \right) \, / \, \left( \rho \, \text{kB T0} \right) \right) \, \left( \text{Pgas} \, / \, \text{Radius} \right), \\ & \text{Pgas} \to 100 \times 10^{-10}, \ \eta \text{air} \to 18.2 \times 10^{-6}, \ \text{d} \to 0.375 \times 10^{-9}, \ \text{T0} \to 300 \right\} \, / / . \ \text{Cnst} \\ & \text{\Gamma} \, / \, \left( 2 \,\pi \right) \, / / . \ \text{TEQpara} \, / / . \ \text{Cnst} \\ & 1.35294 \times 10^{-7} \end{split}
```

```
Syzp := hbar / (2\pi m \gamma \Omega) //. Cnst //. TEQpara //. Cnst;
(* Zero Point Spectral Density *)
SOsci := \left(\left(2 \text{ kB T}\right) / (\pi \text{ m})\right) \left(\Gamma / \left(\left(\Omega^2 - \omega^2\right)^2 + (\omega \Gamma)^2\right)\right) //. \text{Cnst //. TEQpara //. Cnst //.}
     \{T \rightarrow 300 \times 10^{-3}\}; (* Mechanical Motion *)
Sysn := NEP / (10^4)^2 (* Detector Noise *)
SyOscN := 1 \times 10^{-12} / (10^4)^2 (* Oscilloscope Noise *)
SyShotNoise :=
   (*Stotal:= SBrown + SOsci + Sthermal;*)
   ScaleFactor = 1;
PlotZP = LogPlot[Sqrt[Syzp] ScaleFactor, {\omega, 0, 2\pi.2×10<sup>4</sup>}, PlotStyle \rightarrow Red];
PlotOsc = LogPlot[Sqrt[SOsci] ScaleFactor, {\omega, 0, 2\pi.2×10<sup>4</sup>}, PlotStyle \rightarrow Black];
(* PlotTotal=
   LogPlot[Sqrt[Stotal]ScaleFactor, \{\omega, 0, 2 \pi \ 1 \ 10^4\}, PlotStyle \rightarrow Dashed]; *)
PlotSN = LogPlot[Sqrt[Sysn] ScaleFactor, \{\omega, 0, 2\pi.2 \times 10^4\}, PlotStyle \rightarrow Dashed];
Show [PlotOsc, PlotZP, PlotSN,
 PlotRange \rightarrow All,
 PlotPoints \rightarrow 150, PlotStyle \rightarrow Medium,
 AxesLabel \rightarrow {"\omega (Hz)", "S(\omega) m/_{\chi}/Hz"}, PlotRange \rightarrow All]
  S(\omega) m/JHz
1. \times 10^{-12}
5. \times 10^{-13}
1. × 10<sup>-13</sup>
5. × 10<sup>-14</sup>
                        2000
                                          4000
                                                             6000
                                                                               8000
                                                                                                 10000
                                                                                                                    12000
```


Sqrt[S0sci //. Cnst //. TEQpara //. Cnst] $0.0154182 \sqrt{\frac{1}{7.22634 \times 10^{-13} \,\omega^2 + (4\,000\,000 \,\pi^2 - \omega^2)^2}}$ (* PlotRange→ { $\{2 \pi 50 10^3, 2 \pi 150 10^3\}, \{Log[Sqrt[1 10^{-30}]], Log[Sqrt[1 10^{-15}]]\}, *)$ xvar = 1×10^{-12} ; Ekbt = 0.5 kBT //. Cnst //. SotonPara //. T → 300 Eke = $0.5 \text{ m} \Omega^2 \text{ xvar}^2$ //. Cnst //. SotonPara $Tmp = \frac{m \Omega^2}{kB} xvar^2 //. Cnst //. SotonPara$ xv = Sqrt[$\frac{\text{kB T}}{\text{m o}^2}$] //. Cnst //. SotonPara //. T \rightarrow 3 × 10⁻³ (*SBrown :=S0/ ω^2 //.{gfactor \rightarrow 10⁵,S0 \rightarrow 10⁻¹²/gfactor}; (* Brownian Noise *) *) (*Sthermal := (2 kB Tnoise Γ)/ π //.{Tnoise \rightarrow 300}//.Cnst//.TEQpara ; (* Thermal Noise *)*) (*PlotBrown = LogPlot[Sqrt[SBrown]ScaleFactor, { ω , 0, 2 π .2 10⁴}, PlotStyle \rightarrow Brown]; PlotThermal= LogPlot[Sqrt[Sthermal]ScaleFactor, $\{\omega, 0, 2 \pi .2 10^4\}$, PlotStyle \rightarrow Orange];*)

How much power at Backaction and Photon **Recoil Limit?**

The criteria required for the minimum amount of scattered power required to resolve the system (i.e. overcoming measurement noise/imprecision) whilst limiting the backaction is [1]:

```
Syzp := hbar / (2\pi m \gamma \Omega) (* Zero Point Spectral Density *)
Symprecision := (Syzp/2) (1/\eta c) ((m c^2 \gamma \Omega) / (2 \omega 0 Pscat))
(* Measurement Imprecision *)
Sybackaction := (Syzp/2) (2/5) ((2 \omega 0 Pscat) / (m c^2 \gamma \Omega))
(* Measurement Backaction *)
Syy := Syimprecision + Sybackaction
PScatmin := Sqrt[5/(8\eta c)](\Omega/\omega 0) m c^2 \gamma (* *)
TEQpara := {\lambda \rightarrow 1550 \times 10^{-9}, \Omega \rightarrow 2\pi 1 \times 10^3, \gamma \rightarrow 2\pi 269,
   f0 -> c/\lambda, \etac \rightarrow 0.0005, \omega0 \rightarrow 2\pi f0, Radius \rightarrow 100 \times 10<sup>-9</sup>,
   NA \rightarrow 0.997, PO \rightarrow 0.5 \times 10<sup>-3</sup>, k \rightarrow \omega 0/c, m \rightarrow \rho 4 \pi \text{Radius}^3/3, \rho \rightarrow 1800
TEQPointX = PScatmin //. TEQpara //. Cnst;
TEQPoint = Log[Syy/Syzp //. TEQpara //. Cnst /. {Pscat → TEQPointX}];
plotImp = LogLogPlot[Syimprecision/Syzp //. TEQpara //. Cnst,
     {Pscat, 1 \times 10^{-7}, 1 \times 10^{-6}}, PlotStyle \rightarrow Black];
PlotBack = LogLogPlot[Sybackaction / Syzp //. TEQpara //. Cnst,
     {Pscat, 1 \times 10^{-7}, 1 \times 10^{-6}}, PlotStyle \rightarrow Black];
PlotSyyTEQ = LogLogPlot[Syy / Syzp //. TEQpara //. Cnst,
     {Pscat, 1 \times 10^{-7}, 1 \times 10^{-6}}, PlotStyle \rightarrow {Dashed, Orange}];
teqP = Graphics[{PointSize[Large], Orange, Point[{Log[TEQPointX], TEQPoint}]]];
Labeled[Show[plotImp, PlotBack, PlotSyyTEQ, teqP, PlotRange → All],
  {"P_{scat}(W)", "S(\Omega)/S_{zp}(\Omega)"}, {Bottom, Left}]
                 4.0
                 3.5
                 3.0
\boldsymbol{S}\left(\Omega\right)/\boldsymbol{S}_{\boldsymbol{zp}}\left(\Omega\right) \quad {}_{\boldsymbol{2.5}}
                 2.0
                 1.5
                           -15.5 -15.0 -14.5
                                               -14.0
                              P_{\text{scat}}(W)
```

Ξ

Whilst noting that the scattering power is also dependent upon the incident laser power given by:

```
(*JainPointX = PScatmin//.NovotnyPara//.Cnst;
SotonPointX = PScatmin//.SotonPara//.Cnst;*)
(*JainPoint =Log[Syy//.NovotnyPara//.Cnst/.{Pscat→ JainPointX}];
SotonPoint = Log[Syy//.SotonPara//.Cnst/.{Pscat→ SotonPointX}];*)
(*PlotSyy=
LogLogPlot[Syy//.NovotnyPara//.Cnst, {Pscat,1 10<sup>-7</sup>,1 10<sup>-4</sup>},PlotStyle→Red];
PlotSyySoton=LogLogPlot[Syy//.SotonPara//.Cnst,
{Pscat,1 10<sup>-7</sup>,1 10<sup>-4</sup>},PlotStyle→Dashed];*)
(*PlotSyy=LogLogPlot[Syy//.NovotnyPara//.Cnst,
{Pscat,1 10<sup>-7</sup>,1 10<sup>-4</sup>},PlotStyle→Red];
g=Graphics[{PointSize[Large],Red,Point[{Log[JainPointX],SotonPoint}]}];*)
```

Power absorbed/Scattered

```
ε = 2;
(*(*ei*) = 2 e ; (* for 1550nm *)*)

ϵi = 2 € 2.5 × 10<sup>^</sup>-8; (*n=2+i 2.5 10<sup>^</sup>-8 *)

er = e - i ei;
IO := \frac{PO k^2 NA^2}{2 \pi}
PScat := σscatI0
\sigma \text{scat} := \frac{\alpha^2 \, k^4}{6 \, \pi \, \epsilon 0^2}
\alpha := (4 \pi \epsilon 0 \text{ Radius}^3 (n^2 - 1) / (n^2 + 2))
Pabs := 12 \pi \frac{10}{\lambda} \left( \frac{4 \pi \text{Radius}^3}{3} \right) \text{Im} \left[ \frac{\epsilon + i \epsilon i - 1}{\epsilon + i \epsilon i + 2} \right]
SotonPara :=
   \{\lambda \rightarrow 1550 \times 10^{-9}, \text{ fO} \rightarrow c / \lambda, \omega_0 \rightarrow 2\pi \text{ fO}, \text{NA} \rightarrow 0.997, \text{PO} \rightarrow 0.1 \times 10^{-3}, \text{k} \rightarrow \omega_0 / c\}
CavityPara := {\lambda \rightarrow 1064 \times 10^{-9}, f0 -> c/\lambda,
     \omega 0 \rightarrow 2 \pi f 0, NA \rightarrow 0.997, P0 \rightarrow 0.5 \times 10^{-3}, k \rightarrow \omega 0 / c
PScat
Pabs
4 k<sup>6</sup> (-1 + n^2)^2 NA<sup>2</sup> P0 Radius<sup>6</sup>
                  3(2+n^2)^2
\underline{\text{4.71239}\times\text{10}^{-7}\text{ k}^2\text{ NA}^2\text{ PO Radius}^3}
\frac{4 \, k^6 \, (-1 + n^2)^2 \, NA^2 \, PO \, Radius^6}{3 \, (2 + n^2)^2}
4 k^{6} \, \left(-1+n^{2}\right)^{2} \, NA^{2} \; PO \; Radius^{6}
                3(2+n^2)^2
Pabs //. Cnst //. SotonPara /. {Radius \rightarrow 50 × 10<sup>-9</sup>}
```

```
6.20735 	imes 10^{-14}
```

```
CavityAbs = LogLogPlot[Pabs //. Cnst //. CavityPara,
    {Radius, 10 \times 10^{-9}, 500 \times 10^{-9}}, PlotStyle \rightarrow {Dashed, Blue}];
CavityScat = LogLogPlot[PScat //. Cnst //. CavityPara,
    {Radius, 10 \times 10^{-9}, 500 \times 10^{-9}}, PlotStyle \rightarrow {Dashed, Red}];
ParaAbs = LogLogPlot[Pabs //. Cnst //. SotonPara,
    {Radius, 10 \times 10^{-9}, 500 \times 10^{-9}}, PlotStyle \rightarrow {Blue}];
ParaScat = LogLogPlot[PScat //. Cnst //. SotonPara,
    {Radius, 10 \times 10^{-9}, 500 \times 10^{-9}}, PlotStyle \rightarrow {Red}];
teqP = Graphics[{PointSize[Large], Orange, Point[
       {Log[Pabs //. Cnst //. SotonPara /. {Radius \rightarrow 50 × 10<sup>-9</sup>}], Log[50 × 10<sup>-9</sup>]}]}];
Show[CavityAbs, CavityScat, ParaAbs, ParaScat, teqP, PlotRange → All,
 AxesLabel → {"Radius (m)", "Power (W)"}, PlotStyle → Large]
                                                                                 Power (W)
                                                                                 10<sup>-4</sup>
                                                                                 10-8
                                                                                 10-12
         10<sup>-12</sup>
                            10<sup>-11</sup>
                                              10<sup>-10</sup>
                                                                                                      10<sup>-7</sup>
                                                                 10<sup>-9</sup>
```


LogPlot[PScat/Pabs/.Cnst//.SotonPara, {Radius, 10×10^{-9} , 500×10^{-9} }, PlotStyle → {Blue}, AxesLabel → {"Radius [m]", "Pscat/Pabs"}]

Thermal Force Noise

Fnoise := Sqrt $\left[\frac{4 \text{ kB T m }\Omega}{0}\right]$

$$\begin{split} \text{TEQpara} &:= \left\{ \lambda \to 1550 \times 10^{-9}, \ \Omega \to 2 \,\pi \, 1 \times 10^3, \, \text{f0} \to c \,/ \,\lambda, \, \eta c \to 0.0005, \, \omega 0 \to 2 \,\pi \, \text{f0}, \\ \text{Radius} \to 50 \times 10^{-9}, \, \text{NA} \to 0.997, \, \text{k} \to \omega 0 \,/ \,\text{c}, \, \text{m} \to \rho \, 4 \,\pi \, \text{Radius}^3 \,/ \,3, \\ \rho \to 1800, \, \Gamma \to 0.619 \, \left(\left(9 \,\pi \right) \,/ \, \text{Sqrt[2]} \right) \, \left(\left(\eta \text{air } d^2 \right) \,/ \, \left(\rho \, \text{kB T0} \right) \right) \, \left(\text{Pgas} \,/ \, \text{Radius} \right), \\ \text{Pgas} \to 100 \times 10^{-10}, \, \eta \text{air} \to 18.2 \times 10^{-6}, \, d \to 0.375 \times 10^{-9}, \\ \text{T0} \to 300, \, \text{w0} \to \, \frac{\lambda}{\pi \, \text{NA}}, \, \gamma c \to \, \frac{\text{Radius}}{w 0} \right\} \,//. \, \text{Cnst} \\ \text{Fnoise} \,//. \, \left\{ \text{T} \to 300 \times 10^{-3}, \, \text{Q} \to \frac{\Omega}{\Gamma} \right\} \,//. \, \text{TEQpara} \,//. \, \text{Cnst} \\ 3.64246 \times 10^{-24} \end{split}$$

Incident Power

The σ_{scat} is the scattering cross - section due to Rayleigh scatter and I_0 the incident laser intensity determined by P_0 the incident laser power and numerical aperture (NA).

The equation that tells us the detection laser power required to satisfy the condition of being able to reach ground state can be described by:

$$P_{\text{inc}} = \left(\left(3 \times \sqrt{10 \pi \gamma m c^2 \epsilon_0^2} \right) / \left(k^6 \text{ NA}^2 \alpha^2 \right) \right) \frac{\Omega}{\omega 0} \sqrt{\frac{1}{\eta_c}}$$

where α is the polarizability of the particle, Ω the oscillator frequency and $\omega 0$ the frequency of light, and η_c is the detector efficiency. γ is the total damping due to feedback + radiation pressure + gas collision.

Key Parameters

Cnst := {hbar \rightarrow 1.05 × 10⁻³⁴, c \rightarrow 3 × 10⁸, n \rightarrow 1.45, ϵ 0 \rightarrow 8.8 × 10⁻¹², kB \rightarrow 1.38 × 10⁻²³} NovotnyPara := { $\lambda \rightarrow 1064 \times 10^{-9}$, $\Omega \rightarrow 2\pi 150 \times 10^3$, $\gamma \rightarrow 2\pi 269$, f0 -> c/ λ , $\eta c \rightarrow 1$, $\omega 0 \rightarrow 2 \pi f 0$, Radius $\rightarrow 50 \times 10^{-9}$, NA $\rightarrow 0.9$, P0 $\rightarrow 70 \times 10^{-3}$, k $\rightarrow \frac{\omega 0}{2}$, m $\rightarrow 1.14 \times 10^{-18}$ OurPara := { $\lambda \rightarrow 1550 \times 10^{-9}$, Radius $\rightarrow 100 \times 10^{-9}$, $\Omega \rightarrow 2\pi 1 \times 10^{3}$, $\gamma \rightarrow 2 \, \pi \, 269$, fo -> c / $\lambda, \ \eta c \rightarrow 0.0005, \ \omega 0 \rightarrow 2 \, \pi \, fo$, NA \rightarrow 0.997, $\rho \rightarrow 1800$, m $\rightarrow \rho 4 \pi \text{Radius}^3/3$, k $\rightarrow \omega 0/c$ Pinc := $\frac{3\sqrt{\frac{5}{2}} c^2 m (2 + n^2)^2 \gamma \sqrt{\frac{1}{\eta c}} \Omega}{8 k^6 (-1 + n^2)^2 NA^2 Radius^6 \omega 0}$

Pinc 1 x 10³ mW //. NovotnyPara //. Cnst Pinc 1 x 10³ mW //. OurPara //. Cnst

1.41123 mW

0.493314 mW

From the above it is apparent that for Novotny's case he requires roughly 70 mW to reach this regime, whilst changing the NA and wavelength of light allows you to use greater power of 117 mW of laser power.

Ratio of Scatter Force and Photon Recoil

If you have a particle in a trap that scatters a certain amount of power, evidently the incident light will impart a Photon pressure on the particle. What is the strength of this force acting on the particle.

OpticalParameters := $\left\{w0 \rightarrow \frac{\lambda}{\pi NA}, zR \rightarrow \frac{\pi w0^2}{\lambda}, I0 \rightarrow \frac{2P0}{\pi w0^2}\right\}$ $w[z_{-}] := w0 \operatorname{Sqrt}\left[1 + \left(\frac{z}{zR}\right)^2\right]$ $R[z_{-}] := z\left[1 + \left(\frac{zR}{z}\right)^2\right]$ Intensity := $I0\left(\frac{w0}{w[z]}\right)^2 \operatorname{Exp}\left[\frac{-2r^2}{w[z]^2}\right]$ (*The use of n2 is dependant on the material. Change this if you change the particle or the wavelenth of light*) Fscat := $\frac{128\pi^5 \operatorname{n1}a^6}{3c\lambda^4}\left(\frac{m^2-1}{m^2+2}\right)^2$ Intensity //. { $z \rightarrow 0, r \rightarrow 0, a \rightarrow \operatorname{Radius}, n1 \rightarrow 1$ } //. OpticalParameters //. Cnst

The final form of the scattering force can be written as: $F_{\text{scat}} = 2.7 \times 10^{-4} n_1 \frac{(m^2 - 1)^2}{(m^2 + 1)^2} \frac{\text{NA}^2 P_0}{\lambda^6} \text{ Radius}^6$ where $m_1 n_2^{-1}$ with n_2 and n_3 are the refrective indices of

where $m = \frac{n_2}{n_1}$ with n_1 and n_2 are the refractive indices of the environment (air) and the particle (silica). NA is the numerical aperture, λ is the wavelength of light and P_0 is the incident power.

In this case, if we consider the incident $P_0 = P_{inc}$ then we can work out the scattering force imparted on the particle:

10x10 ⁻⁹ nm	25x10 ⁻⁹ nm	50x10 ⁻⁹ nm	100x10 ⁻⁹ nm	200x10 ⁻⁹ nm
0	0	0	0	0
4.90046 $\times\text{10}^{-6}$ fN	0.0011964 fN	0.0765697 fN	4.90046 fN	313.629 fN
0.000490046 fN	0.11964 fN	7.65697 fN	490.046 fN	31362.9 fN
0.00245023 fN	0.598201 fN	38.2848 fN	2450.23 fN	156815.fN

The rows refer to the power P_0 at 0, 1 mW, 100 mW, 500 mW and the numbers in the table refer to

TEQpara := { $\lambda \rightarrow 1550 \times 10^{-9}$, $\Omega \rightarrow 2\pi 1 \times 10^3$, $\gamma \rightarrow 2\pi 269$, f0 -> c/ λ , η c $\rightarrow 0.0005$, ω 0 $\rightarrow 2\pi$ f0, Radius $\rightarrow 50 \times 10^{-9}$, NA $\rightarrow 0.997$, P0 $\rightarrow 0.5 \times 10^{-3}$, k $\rightarrow \omega$ 0/c, m $\rightarrow \rho 4\pi$ Radius³/3, $\rho \rightarrow 1800$, r $\rightarrow 0.619 ((9\pi) / \text{Sqrt[2]}) ((\eta \text{air d}^2) / (\rho \text{ kB T0})) (\text{Pgas} / \text{Radius})$, Pgas $\rightarrow 100 \times 10^{-10}$, η air $\rightarrow 18.2 \times 10^{-6}$, d $\rightarrow 0.375 \times 10^{-9}$, T0 $\rightarrow 300$ }

Grid[Table[Fscat 1 × 10¹⁵ fN //. TEQpara, {P0, {1 × 10⁻⁶, 500 × 10⁻⁶, 1 × 10⁻³}}, {Radius, {50 × 10⁻⁹, 200 × 10⁻⁹}}], Frame → All]

0.0000765697 fN	0.313629 fN	
0.0382848 fN	156.815 fN	
0.0765697 fN	313.629 fN	

Insert[ReplacePart[Grid[{{0.0000765697 fN, 0.313629 fN},

{0.0382848 fN, 156.815 fN}, {0.0765697 fN, 313.629 fN}}, Frame → All],

 $1 \rightarrow Prepend[First[Grid[{{"1 $\mu W"$, 0.0000765697 fN, 0.313629 fN}},$

{"500 μ W", 0.0382848 fN, 156.815 fN}, {"1 mW", 0.0765697 fN, 313.629 fN}}, Frame \rightarrow All]], {"P₀", "50 nm", "200 nm"}]],

{Background \rightarrow {None, {GrayLevel[0.7], {White}}},

Dividers \rightarrow {Black, {2 \rightarrow Black}}, Frame \rightarrow True,

Spacings \rightarrow {2, {2, {0.7}, 2}}, 2]

Po	50 nm	200 nm
1 µW	0.0000765697 fN	0.313629 fN
500 µW	0.0382848 fN	156.815 fN
1 mW	0.0765697 fN	313.629 fN

Paul Trap

The Paul trap potential can be given by the following equation:

 $U_{\rm ion} = \frac{1}{2} m \omega_{\rm ion}^2 r_e^2$

where *m* is the mass of the particle, ω_{ion} the angular frequency of oscillation, r_e the distance between the electrodes. Alternatively the force for a quadrupole ion trap is given by:

 $F_{\text{ion}} = -\frac{2e}{d_0} (V_{\text{dc}} + V_{\text{rf}} \cos(\omega_{\text{ion}} t)) x$

where e, is the electric charge, d_0 a size parameter constant, V_{dc} and V_{rf} are the voltages of the applied DC and RF fields, whilst ω_{ion} is the driving frequency of the RF applied along the *x* direction of the system.

IonPara := {re \rightarrow 500 × 10⁻⁶, ω ion \rightarrow 2 π 1 × 10³} U := $\frac{1}{2}$ m ω ion² re² Fion := $-\frac{2 e}{d0}$ (Vdc + VrfCos[ω Iont]) U/kBT//. IonPara //. OurPara //. Cnst/. T \rightarrow 300 // N 3.41238 × 10⁸

References

[1] Jain, V., Gieseler, J., Moritz, C., Dellago, C., Quidant, R.and Novotny, L., 2016. Direct measurement of photon recoil from a levitated nanoparticle. Physical review letters, 116 (24), p. 243601.
[2] PDB450C(-AC) https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5201
[3] https://www.hamamatsu.com/resources/pdf/ssd/ingaas_kird0005e.pdf

Status of the LNF activities on electronics

TEQ MEETING Southampton, June 22 2018

Power Supply Requirements

Due to its ambitious finality, the Particle Trap Power Supply must respond to the following specifics:

- Max amplitude 50V
- Typical Bandwidth 10kHz
- Maximum output Noise 22nV/VHz

Current Power Supply Apparatus

Amplifier Schematic

Power Supply Requirements

Current design has been thoroughly reviewed to check if specifics were respected.

DC GAIN = 10 OK Bandwidth = 300kHz OK NOISE...

Among all specifics, noise is indeed the most critical.

NOISE analysis include:

- Identify the main sources of noise
- Calculate Noise GAIN for each source
- Output Noise Estimation for each source
- Quadratic Sum of all Noise contibution

Power Supply Requirements

Current design has been thoroughly reviewed to check if specifics were respected.

DC GAIN = 10 OK Bandwidth = 300kHz OK TOTAL NOISE MORE THAN 100nV/vHz!

BUT WE CAN SOLVE!

Power Supply Adjustements

Current design can be salvaged with a few expedients:

- Reduce resistor values, maintaining DC Gain
- Increase capacitor values, maintaining time constants
- Replace OPA277 with a low noise amplifier
- Place on the output an additional Low Pass Filter at desired BW

Power Supply Adjustements

Possible solution is to replace:

- R1=1K R7=100R R2=10K R2=1K C1=68pF C2=10pF
- OPA277 with LT6018 (same package, 1nV of noise)
- Add 100kHz low pass filter

Result is...

15nV/VHz of noise!

But still we are not considering the signal source...

In the current application a "bath curve" dynamics is required

• Signal source is AD5791 DAC

- From datasheet its noise is 7.5nV/vHz
- By using this source the output noise would be 75nV/VH at least!
- The maximum source noise allowed is 1.5nV/VH

Signal generator must be replaced for noise and other issues. A better candidate is AD9106 waveform generator.

- Current mode DAC
- High accuracy and stability
- From datasheet noise is 0,999nV/VHz
- SPI Programmable device
- 4 channels
- Low cost (20€ per chip)
- Evaluation board with labview interface
- USB connection

Evaluation board has already been purchased and currently under test.

DRAWBACKS:

- Evaluation board costy (500€)
- External Clock reference (1Ghz typ.)
- Labview interface not user friendly!
- No manual included!

NEXT STEPS ARE:

- Signal pattern generation
- Noise tests
- Output filter design
- Integration in current set-up
 - Using current board
 - Developing new layout with specific features

W

Α

F

F

 \mathbf{O}

R

Μ

S

Α

Μ

D

F

Grazie per l'attenzione!

TEQ MEETING Southampton, June 22 2018

Testing the Large-Scale Limit of **Quantum Mechanics (TEQ)**

Synthesis of **Yb-doped LiYF**₄ Colloidal Nanocrystals

Liberato Manna <u>Luca De Trizio</u> Francesco De Donato

Southampton – 22nd of June

Work Progress: 2nd of February 2018

Reference synthesis protocol: Solvothermal Approach

2% Er³⁺,10%Yb³⁺:LiYF₄ 10% Yb³⁺:LiYF₄

200nm

Reference paper: Roder et al. PNAS 2015, 112 (49) 15024-15029

Work Progress: 2nd of February 2018

Our Results: Solvothermal Approach

Our Results Solvothermal Approach

Yb:YLF Sample 3

Work Progress: 2nd of February 2018

Colloidal Approach

Roberts et al. J. Am. Chem. Soc. , 1961, 83 (5), pp 1087–1088 Du et al. Dalton Trans., 2009,0, 8574-8581

Work Progress: Today «non doped» LiYF₄ NCs

500-pm

-

- The acqueous solution was heated up to 100°C under N₂ flow to get a clear solution
 - The solution was dried under vacuum to remove the excess of TFA and water
 - The resulting powder was solubilized in 12 mL of a mixture of Oleic Acid and Octadecene and degassing at 120°C for 1 hour
 330 °C (10°C/min) – Growth 15 min

«non doped» LiYF₄ NCs

XRD analysis

Different Yb:LiYF₄ NC samples were synthesized following the same protocol, adding also Yb₂O₃, as Yb precursor, from the very beginning.

30% Yb:LiYF₄ NCs

ICP elemental analysis Yb/Y=0.30

30% Yb:LiYF₄ NCs

30% Yb:LiYF₄ NCs

Wavelength (nm)

38% Yb:LiYF₄ NCs

100 n

38% Yb:LiYF₄ NCs

XRD analysis

Wavelength (nm)

127% Yb:LiYF₄ NCs

ICP elemental analysis

Yb/Y=1.27

127% Yb:LiYF₄ NCs

Ligand Stripping

Making the NCs dispersible in Methanol

In order to remove the ligands from the surface of NCs we employed:

-Triethyloxonium tetrafluoroborate (NOBF₄) -Triethyloxonium tetrafluoroborate (Et₃OBF₄)

Ligand Stripping

Both reagents yielded good results: the size, shape, composition and crystal structure were not altered upon the ligand removal procedure

Current status of the TEQ trap design

Michael Drewsen Department of Physics and Astronomy Aarhus University Denmark

TEQ Meeting, June 21, 2018 University of Southampton, UK

Outline

- I) Physical layout
- I) Requirements related to the electronics and heating
- I) Passive NC cooling
- I) Still unresolved issues

I) Physical layout

The linear Paul trap

Sinusoidal RF potential: $U_{RF}(t)=U_{RF}sin(\Omega t)$

Effective oscillation freq.'s:

 $\omega_{r}=1/2 \beta \Omega, \quad \beta = (1/2 \mathbf{q}^{2}+\mathbf{\alpha})^{1/2} \qquad \mathbf{q} = \frac{4 Q U_{RF}}{m \Omega^{2} r_{0}^{2}} \quad \mathbf{\alpha} = -\frac{\alpha Q U_{end}}{m \Omega^{2} r_{0}^{2}}$ $\omega_{z}= (-1/2 \mathbf{\alpha})^{1/2} \Omega$

Blade electrode trap I

Note:

 $U_{RF}(t)$ and U_{end} has to be mixed together.

Blade electrode trap II

RF blade electrode

DC blade electrode

Mounted electrodes in an end view:

No mixing of $U_{RF}(t)$ and U_{end} needed!

<u>Blade mat.:</u> Gold on Alumina

From PhD thesis of David Hucul

TEQ linear rf trap Design by Chris Monroe's Group

<u>Blade mat.:</u> Gold on Alumina

From PhD thesis of David Hucul

Imaging setup

TEQ linear rf (ac) trap? Design by Chris Monroe's Group

TEQ linear rf (ac) trap? Design by Chris Monroe's Group

Blade Trap Holder Drawn By: P.W. Hess Material: Sapphire or Alumina Notes:

- All Units in mm
- Tolerances on angled ٠ surfaces < 1 mil (0.025 mm)

Another option for blade support constructed by Shuoming An, Tsinghua Uni.

Another option for blade support constructed by Shuoming An, Tsinghua Uni.

Monolitic blade electrode holder best for precise alignment

II) Requirements related to the electronics and heating

Can we meet these requirements in both potential trap configurations?

Blade electrode trap I

Note:

 $U_{RF}(t)$ and U_{end} has to be mixed together.

Blade electrode trap II

RF blade electrode

DC blade electrode

Mounted electrodes in an end view:

No mixing of U_{RF}(t) and U_{end} needed!

WHAT ADOUT HEAT WAD?

Another option for blade support constructed by Shuoming An, Tsinghua Uni.

III) Passive NC cooling

IV) Still unresolved issues

- I) Integrating of optical elements (Imaging and cooling)
- I) CNP loading
- II) Resistive cooling (Circuitry at 4K or lower?)
- I) Effect of charge migration on the NCs during experiments
- II) Changing in mass during an experiment due to adsorption

Potentially new AU TEQ contribution

Experiments med ground-state-cooled highly-charged bio-molecule homologues in a cryogenically cooled linear rf trap

Cryogenically cooled linear rf trap

Photo of central trapping region

30 cm

Idea:

Work with *single*, charged molecular species injected from an electrospray source into a cryogenically cooled ion trap:

New collaborator

Prof. Harry L. Anderson Dept. Chemistry University of Oxford

Molecular Engineering

2-porphyrin

12-porphyrin

24-porphyrin

Electrospay mass spectra of highly charged c-P6•T6 porphyrine

12-porphyrine

M>10⁴ amu !

Next step:

Buffer gas cooling with quenched He* MOT atoms

 $T_{He} \sim 1 \text{ mK} \Rightarrow$ hopefully very cold molecular ions too!

Ways towards improved detection sensitivity?
I) Creation of Schrödinger's Cat states

PRL 116, 140402 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 APRIL 2016

G

Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets

D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home^{*} Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland (Received 26 January 2016; published 5 April 2016)

We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for $\Delta \alpha = 15.6$, corresponding to a distance of 240 nm between the two superposed wave packets.

DOI: 10.1103/PhysRevLett.116.140402

$$|\psi_{\text{ent}}\rangle = \frac{1}{\sqrt{2}}(|+\rangle|\alpha\rangle + |-\rangle|-\alpha\rangle)$$

II) Quantum lock-in detection of change in motional state

Quantum Lock-in Force Sensing using Optical Clock Doppler

Velocimetry

Ravid Shaniv¹ & Roee Ozeri¹

March 1, 2016

Abstract

Force sensors are at the heart of different technologies such as atomic force microscopy or inertial sensing [2, 1, 3]. These sensors often rely on the measurement of the displacement amplitude of mechanical oscillators under applied force. Examples for such mechanical oscillators include micro-fabricated cantilevers [3], carbon nanotubes [4] as well as single trapped ions [5, 6]. The best sensitivity is typically achieved when the force is alternating at the mechanical resonance frequency of the oscillator thus increasing its response by the mechanical quality factor. The measurement of low-frequency forces, that are below resonance, is a more difficult task as the resulting oscillation amplitudes are significantly lower. Here we use a single trapped ${}^{88}Sr^+$ ion as a force sensor. The ion is trapped in a linear harmonic trap, and is electrically driven at a frequency much lower than the trap resonance frequency. To be able to measure the small amplitude of motion we combine two powerful techniques. The force magnitude is determined by the measured periodic Doppler shift of an atomic optical clock transition and the Quantum Lock-in technique is used to coherently accumulate the phases acquired during different force half-cycles. We demonstrate force detection both when the oscillating force is phase-synchronized with the quantum <u>lock-in sequence</u> and when it is asynchronous and report frequency force detection sensitivity as low as

 $5.3 \times 10^{-19} \frac{N}{\sqrt{Hz}}$.

NPL monolithic trap

NPL monolithic trap compensation electrodes **Electrode** rf electrode layout gnd rfgnd gnd loading endcap endcap transfer 7 operation zones ohmic dc & compensation electrodes contacts to n-Si bulk co

Potentially new AU TEQ contribution

Experiments med ground-state-cooled highly-charged bio-molecule homologues in a cryogenically cooled linear rf trap

Cryogenically cooled linear rf trap

Cryogenically cooled linear rf trap

Trap details

Photo of central trapping region

30 cm

Idea:

Work with *single*, charged molecular species injected from an electrospray source into a cryogenically cooled ion trap:

New collaborator

Prof. Harry L. Anderson Dept. Chemistry University of Oxford

Molecular Engineering

2-porphyrin

12-porphyrin

24-porphyrin

Electrospay mass spectra of highly charged c-P6•T6 porphyrine

12-porphyrine

M>10⁴ amu !

Next step:

Buffer gas cooling with quenched He* MOT atoms

 $T_{He} \sim 1 \text{ mK} \Rightarrow$ hopefully very cold molecular ions too!

Ways towards improved detection sensitivity?

I) Creation of Schrödinger's Cat states

PRL 116, 140402 (2016)

PHYSICAL REVIEW LETTERS

week ending 8 APRIL 2016

G

Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets

D. Kienzler, C. Flühmann, V. Negnevitsky, H.-Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home^{*} Institute for Quantum Electronics, ETH Zürich, Otto-Stern-Weg 1, 8093 Zürich, Switzerland (Received 26 January 2016; published 5 April 2016)

We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for $\Delta \alpha = 15.6$, corresponding to a distance of 240 nm between the two superposed wave packets.

DOI: 10.1103/PhysRevLett.116.140402

$$|\psi_{\text{ent}}\rangle = \frac{1}{\sqrt{2}}(|+\rangle|\alpha\rangle + |-\rangle|-\alpha\rangle)$$

II) Quantum lock-in detection of change in motional state

Quantum Lock-in Force Sensing using Optical Clock Doppler

Velocimetry

Ravid Shaniv¹ & Roee Ozeri¹

March 1, 2016

Abstract

Force sensors are at the heart of different technologies such as atomic force microscopy or inertial sensing [2, 1, 3]. These sensors often rely on the measurement of the displacement amplitude of mechanical oscillators under applied force. Examples for such mechanical oscillators include micro-fabricated cantilevers [3], carbon nanotubes [4] as well as single trapped ions [5, 6]. The best sensitivity is typically achieved when the force is alternating at the mechanical resonance frequency of the oscillator thus increasing its response by the mechanical quality factor. The measurement of low-frequency forces, that are below resonance, is a more difficult task as the resulting oscillation amplitudes are significantly lower. Here we use a single trapped ${}^{88}Sr^+$ ion as a force sensor. The ion is trapped in a linear harmonic trap, and is electrically driven at a frequency much lower than the trap resonance frequency. To be able to measure the small amplitude of motion we combine two powerful techniques. The force magnitude is determined by the measured periodic Doppler shift of an atomic optical clock transition and the Quantum Lock-in technique is used to coherently accumulate the phases acquired during different force half-cycles. We demonstrate force detection both when the oscillating force is phase-synchronized with the quantum <u>lock-in sequence</u> and when it is asynchronous and report frequency force detection sensitivity as low as

 $5.3 \times 10^{-19} \frac{N}{\sqrt{Hz}}$.

Heating of two ions

Heating of two ions

Heating of two ions

SHAPAL[™]Hi-M soft is based upon the first translucent aluminium nitride developed by Tokuyama Soda Co. Ltd. and is a composite sintered body of AIN and BN.

Thermophysical properties of sapphire, AlN and MgAl₂O₄ down to 70 K

St. Burghartz, B. Schulz

Kernforschungszentrum Karlsruhe, Institut für Materialforschung 1, P.O. Box 3640, 76021 Karlsruhe, Germany

Fig. 2. Thermal linear expansion of sapphire $((\bigcirc) || c, (\triangle) \perp c)$, α -Al₂O₃ (\diamondsuit), AlN Shapal (\Box) and MgAl₂O₄ (\times), γ is the Grüneisen constant.

Journal of Nuclear Materials 212-215 (1994) 1065-1068

Machinable Glass Ceramic

	Approximate Weight %
Silicon - SiO ₂	46%
Magnesium - MgO	17%
Aluminum - Al ₂ O ₃	16%
Potassium - K ₂ O	10%
Boron – B_2O_3	7%
Fluorine - F	4%

Molybdenum

NIST, Cryogenic technologies group
Molybdenum

Molybdenum

Molybdenum

Copper

TABLE 2. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF COPPER

[Temperature, T, K; Total Resistivity, ρ , 10⁻⁸ Ω m; Intrinsic Resistivity, ρ_i , 10⁻⁸ Ω m]

т	ρ _i a, b	ρ ^{a, c}	т	ρ _i a,b	ρ ^{a, c}
1		0.00200	175	0.872	0.874
4		0.00200	200	1.044	1.046
7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	0.00200	225	1.215	1.217
10		0.00202	250	1.385	1.387
15		0.00218	273.15	1.541	1.543
20	0.000798*	0.00280	293	1.676	1.678
25	0.00249 *	0.00449	300	1.723	1.725
30	0.00628	0.00828	350	2.061	2.063
35	0.0127	0.0147	400	2.400	2.402
40	0.0219	0.0239	500	3.088	3.090
45	0.0338	0.0358	600	3.790	3.792
50	0.0498	0.0518	700	4,512	4.514
55	0.0707	0.0727	800	5.260	5.262
60	0.0951	0.0971	900	6.039	6.041
70	0.152	0.154	1000	6.856	6.858
80	0.213	0.215	1100	7.715	7.717
90	0.279	0.281	1200	8.624	8.626
100	0.346	0.348	1300	9.590	9.592
125	0.520	0.522	1357.6	10.169	10,171
150	0.697	0.699			

Solid

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER

ELECTRICAL RESISTIVITY VERSUS TEMPERATURE FOR COPPER

Gold

TABLE 5. RECOMMENDED VALUES FOR THE ELECTRICAL RESISTIVITY OF GOLD

[Temperature, T, K; Total Resistivity, ρ , 10⁻⁸ Ω m; Intrinsic Resistivity, ρ_i , 10⁻⁸ Ω m]

т	ρ _i a,b	a, c p	Т	ρ _i ^{a,b}	ρ ^{a, c}
1		0.0220	175	1.240	1.262
4		0.0220	200	1.440	1,462
7		0.0221	225	1.640	1.662
10		0,0226	250	1.842	1.864
15	0.00376*	0.0258	273.15	2.029	2.051
20	0.0126*	0.0346*	293	2,192	2.214
25	0.0282*	0.0502*	300	2.249	2.271
30	0.0505*	0.0725*	350	2.663	2.685
35	0.0798*	0.1018*	400	3.085	3.107
40	0.119*	0.141*	500	3.952	3.974
45	0,159	0.181	600	4.853	4.875
50	0.199	0.221	700	5.794	5.816
55	0.248	0,270	800	6.786	6.808
60	0.286	0.308	900	7.840	7.862
70	0.373	0.395	1000	8.964	8.986
80	0,459	0,481	1100	10.169	10,191
90	0.544	0.566	1200	11.464	11.486
100	0.628	0.650	1300	12.832	12.854
125	0.835	0.857	1337.58	13.366	13.388
150	1.039	1.061			

Solid

NPL monolithic trap

NPL monolithic trap compensation electrodes **Electrode** rf electrode layout gnd rfgnd gnd loading endcap endcap transfer 7 operation zones ohmic dc & compensation electrodes contacts to n-Si bulk co

Microfabrication

(4)

(5)

(6)

metallisation

Si etch

internal metallisation

electroplate

die

Innovate UK

P. See, G. Wilpers, P. Gill, A. G. Sinclair, J. Microelectromech. Syst., 22 1180 (2013).

die

Recent heating rates (trap @ T_{ambient})

M D Hughes, *et al*, Contemp. Phys. <u>52</u>, 505 (2011) I. A. Boldin, et al, arXiv:1708.03147v1 (2017)

MIT Lincoln Lab (surface microtrap)

(surface microtrap)

(surface microtrap)

(3D monolithic microtrap)

(macroscopic, linear)

(Au on ceramic)

Die singulation

Molybdenum trap

TEQ linear rf (ac) trap Design by Chris Monroe's Group

Design: Chris Monroe's grou

TEQ linear rf (ac) trap Design by Chris Monroe's Group

-25

The linear Paul trap

Sinusoidal RF potential: $U_{RF}(t)=U_{RF}sin(\Omega t)$

Effective oscillation freq.'s:

 $\omega_{r}=1/2 \beta \Omega, \quad \beta = (1/2 \mathbf{q}^{2}+\mathbf{\alpha})^{1/2} \qquad \mathbf{q} = \frac{4 Q U_{RF}}{m \Omega^{2} r_{0}^{2}} \quad \mathbf{\alpha} = -\frac{\alpha Q U_{end}}{m \Omega^{2} r_{0}^{2}}$ $\omega_{z}= (-1/2 \mathbf{\alpha})^{1/2} \Omega$

TEQ linear rf (ac) trap Design by Chris Monroe's Group

Past DC supply noise-tests

DC supply

Heating rates

Heating rates of a single ⁴⁰Ca⁺

Heating rate model – single ion

DC supply

DC supply

Heating rates with unamplified (DAC) supply

$$\dot{\bar{n}} \simeq A \times 8 \frac{e^2}{4m\hbar\omega_z} F(\omega_z)^2 \frac{S_{V_{DC}}(\omega_z)}{D^2}$$

~20 times lower heating!

Motional kicks due to ramping

'Design and Realization of the TEQ experiment' meeting

Part I – Project Management

Southampton – 22nd June 2018

MINUTES

1. Welcome to the participants by Angelo Bassi, Chair. The members present at the Meeting are:

James Bain (M2) Peter Barker (UCL) Angelo Bassi (UniTs) Massimiliano Bazzi (INFN) Matteo Carlesso (UniTs) Catalina Curceanu (INFN) Luca De Trizio (TUD) Michael Drewsen (AU) Alessandro Ferraro (QUB) Giulio Gasbarri (UniTs) Oussama Houhou (QUB) Marta Marchese (QUB) Mauro Paternostro (QUB) Thomas Penny (UCL) Antonio Pontin (UCL) Anishur Rahman (UCL) Muddassar Rashid (UoS) Ashley Setter (Uos) Christopher Timberlake (UoS) Marko Toros (UoS) Hendrik Ulbricht (UoS) Andrea Vinante (UoS)

2. Next Steering Committee Meeting

www.tequantum.eu

TEQ is a FET OPEN H2020 project

The Chair, in agreement with the partner TUDelft, proposes to hold the Next Steering Committee Meeting on 8-9 November 2018 in Delft. The partners agree with date and place and confirm their presence.

The Chair presents the tentative agenda for the Next Steering Committee Meeting:

Tentative agenda

Management (1/2 day):

- Monitoring of milestones/deliverables
- Discussion of critical issues (if any)
- Preparation for the review meeting

Science: Theory and Experimental Discussion

Workshop: to be defined

The agenda will be finalized in the next months.

3. Review Meeting

The Steering Committee members present at the meeting discuss the date to propose to the PO for the first Review Meeting.

According to the latest message of the PO to the PI and to the project timing, the meeting has to take place in the second half of February 2019.

The proposed dates for the Review Meeting are: **February 26 or 27, 2019**. A decision will be made between the PO and the PI. The PI reminds what was discussed at the Kick-off Meeting:

"- The PI of every unit should be present.

- The day before the meeting a "rehearsal" will take place."

[From the minutes of the Kick-Off Meeting]

The Steering Committee members discuss the place to propose to the PO for the first Review Meeting.

According to the latest message of the PO to the PI, the SC "[...] could have the meeting at one of the partners sites in case there is experiment/equipment/physical results to be shown to the monitors to help them with their assessment on the work".

The SC members unanimously decide to propose to the PO to hold the Review Meeting in Brussels. Other venues will be taken into consideration for the other Review Meetings (M30 and M48).

The Steering Committee discuss the name of the monitors to propose to the PO for the first Review Meeting. The PO has asked for 9 names in three areas. The list of names which will be proposed to the PO includes:

a. Quantum mechanics/foundations: Chiara Macchiavello (Pavia University, Italy) Christiane Koch (Kassel, Germany) Adrian Kent (Cambridge, UK) Ward Struyve (KU Leuven, Belgium)

b. Optomechanics: TheoryAlexia Auffeves (Grenoble, France)Radim Filip (Olomouc, Check Republic)Vittorio Giovannetti (SNS Pisa, Italy)

c. Optomechanics: Experiments Romain Quidant (ICFO Spain) Lukas Novotny (ETH Zurich Switzerland) Tracy Northrup (University of Innsbruck Austria)

The PI presents the tentative agenda for the Review Meeting, as per last message of the PO:

9:00 - 9:15	R. Borissov (chair)	Introduction, tour du table
9:15 – 9:45		Overview by the coordinator
9:45 - 10:30		WP 1
Coffee (10:30 to 11:00)		
11:00 - 11:45		WP 2
11:45 – 12:30		WP 3
Lunch (12:30 to 13:30)		
13:30 - 14:15		WP 4
14:15 – 14:30		WP 6 (management)
14:30 - 14:45		WP 7 (dissemination)
14:45 – 15:15		Financial data
15:15 – 15:45		Innovation potential discussion
15:45 – 16:15	General discussion	
16:15 - 16:45	Assessment preparation by monitors and PO	
16:45 - 17:00	R. Borissov	Closing

4. Closing

Angelo Bassi, Chair, wraps up the discussion on management issues and gives the word to the other speakers for the scientific discussion.