
Model Checking Recursive Quantum Protocols

Linda Anticoli

Dept. of Mathematics, Computer Science and Physics - University of Udine, Italy.
School of Computing Science - Newcastle University, UK.

Model Checking Recursive Quantum Protocols 1 / 36

June 1996
Ariane 5 launcher failure

"Loss of information due to specification and design errors in the software of the inertial
reference system."

Model Checking Recursive Quantum Protocols 2 / 36

Motivations

Quantum information is more fragile than classical one

⇓

flaws in the design of quantum protocols and noise in their physical
implementation

Model Checking Recursive Quantum Protocols 3 / 36

Motivations

State of the art:
Formal, higher–level specification of quantum algorithms
Quantum Programming Languages

- J. W. Sanders and P. Zuliani. "Quantum Programming" (2000)
- A. van Tonder. "A lambda calculus for quantum computation" (2003)
- A.S. Green, , et Al. "Quipper: A Scalable Quantum Programming
Language" (2013).

Formal verification of quantum algorithms
Quantum Model Checkers

- P. Mateus, et Al. "Towards model-checking quantum security
protocols" (2007)
- Y. Feng, et Al. "QPMC: A Model Checker for Quantum Programs
and Protocols" (2015)

Model Checking Recursive Quantum Protocols 4 / 36

Motivations

Desiderata:
High-level formalisms allowing to define and automatically verify formal
properties of algorithms abstracting away from low–level physical details:

- L. Anticoli, et Al. "Towards quantum verification: From Quipper circuits to
QPMC" (2016)
- L. Anticoli,et Al. "Entangλe: A Translation Framework from Quipper
Programs to Quantum Markov Chains" (2017).

Model Checking Recursive Quantum Protocols 5 / 36

Preliminaries and Notation

Question 1
What is a quantum algorithm (or quantum protocol)?

⇓

Quantum Computation and Information

Question 2
What does model–checking mean?

⇓

Formal Methods in Computer Science

Model Checking Recursive Quantum Protocols 6 / 36

Quantum Computation and Information – Remarks

Paradigm of computation concerned with computational tasks, and
information processing achieved through quantum mechanical systems.

Efficient solutions for classically hard problems

Integer Factoring n = log2N

- Classical Solution -> ≈ exp[O(n1/3log2/3n)];
- Shor’s Algorithm -> ≈ O(n3);

Unsorted Database Search
- Classical Solution -> O(N);
- Grover’s Algorithm -> O(N1/2);

Model Checking Recursive Quantum Protocols 7 / 36

Quantum Computation and Information – Remarks

Efficiency
Parallelism: linearity of space and operators;
Interference: the states interfere deleting the “wrong" ones, while
increasing the probability of the desired outcome.
Correlations: non–local correlations between the outcomes of
measurements performed on different qubit strings.

Model Checking Recursive Quantum Protocols 8 / 36

Qubit

Superposition of States
Quantum analogue of a classical bit. State of a 2-level system:

|ψ〉 = α|0〉+ β|1〉

where |α|2 + |β|2 = 1 and α, β ∈ C

Quantum Register
Quantum analogue of a classical bit string composed by n–qubits:

|ψtot〉 = |ψ1〉 ⊗ · · · ⊗ |ψn〉

allowing 2n superposed basis states.

Model Checking Recursive Quantum Protocols 9 / 36

Quantum Circuit Model

Quantum Gates
Quantum counterpart of classical logic gates.

n qubits −→ quantum gates: 2n × 2n unitary operators.

Single Qubit Gates

σx =

(
0 1
1 0

)
H =

1√
2

(
1 1
1 −1

)
Controlled Gates

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

tipically used to create correlations.

Model Checking Recursive Quantum Protocols 10 / 36

Quantum Circuits
Quantum algorithms are represented by quantum circuits in which the
computation is realised by the following steps.

1 State preparation;
2 Application of unitary operators;
3 Measurement.

|0〉 H

Figure: Quantum Coin Tossing Circuit.

Model Checking Recursive Quantum Protocols 11 / 36

Applications

Quantum Teleportation

Quantum information (qubits) is transmitted from a location to another by
means of classical communication and previously shared entangled couples
between sender and receiver.

Quantum Cryptography
Use of quantum effects to perform cryptographic tasks.
Measurement disturbs the data –> eavesdropper can be detected!

Refs:
C. H. Bennett, et Al. "Teleporting an Unknown Quantum State via Dual Classical and
Einstein-Podolsky-Rosen Channels"
C. H. Bennett, et Al. "Quantum cryptography: Public key distribution and coin tossing"

Model Checking Recursive Quantum Protocols 12 / 36

Issues

Problem 1
Quantum circuits are low level descriptions of computation.

Problem 2
Quantum circuits are not Turing complete, no recursion.

Model Checking Recursive Quantum Protocols 13 / 36

Quantum Programming Languages

Solution1
Quantum Programming Languages: abstract the computation from the
physical low–level detail to a human readable, and formally defined
high–level description.

Quantum pseudocode
QCL
Q Language
qGCL
Quantum Lambda Calculus
Quipper
LIQUi|〉
. . .

Model Checking Recursive Quantum Protocols 14 / 36

Quipper

Functional programming for quantum computation.
Based on Haskell;
The semantics of a Quipper program is given in terms of extended
quantum circuits;
Allows to generate a graphical representation of the implemented
circuit, but not of quantum programs;
Provides three different of simulators.

A Quipper program is a function that inputs some quantum and classical
data, performs state changes on it, and then outputs the changed
quantum/classical data.

Model Checking Recursive Quantum Protocols 15 / 36

Quipper example

qCoinFlip :: Qubit -> Circ Bit
qCoinFlip q = do

q <- qinit False
hadamard_at q
c <- measure q
return c

qCoinFlipRec :: Qubit -> recCirc ()
qCoinFlipRec q = do

q <- qinit False
hadamard_at q
c <- measure q
[...]
if c==0 then

return c
else

return qCoinFlip(q)

|0〉 H

?

Model Checking Recursive Quantum Protocols 16 / 36

Quantum Markov Chains

Solution 2
Data–structures allowing to model recursion in quantum algorithms:
Quantum Markov Chains.

Quantum Markov Chain
Tuple (S ,Q,AP, L), where:

S is a countable (finite) set of classical states;
Q : S × S → SI(H) is the transition matrix where for each s ∈ S ,the
operator

∑
t∈S Q(s, t) is trace-preserving;

AP is a finite set of atomic propositions;
L : S → 2AP is a labelling function.

Model Checking Recursive Quantum Protocols 17 / 36

Example

s0 s1

s2

s3

H
P0

P1

I

I

Figure: QMC for Quantum Coin
Tossing.

s0 s1

s2

s3

H

I

P0

P1

I

Figure: QMC for Recursive Quantum
Coin Tossing.

QMCs are more expressive! So, let’s use them.

Model Checking Recursive Quantum Protocols 18 / 36

Equivalent Behaviour

Bisimilarity
A quantum circuit can always be translated in a QMC with the same
behaviour, while the converse is not possible.

(Boring proofs in references)

Now what?
Formal, high–level language to express quantum computations �X

Formal definition of recursion in quantum programs �X

Formal verification of quantum programs �

Model Checking Recursive Quantum Protocols 19 / 36

Quantum Model Checking (1)

Model Checking

Exhaustive exploration of the state space of a system to verify (or falsify) if
a temporal property is satisfied.

Step–by–step
Abstract model of the system;
Temporal logic to specify the properties.

Model Checking Recursive Quantum Protocols 20 / 36

Quantum Model Checking (2)

Abstract Model
Graph structure representing the computation steps. Classically: Kripke
structures, LTS, DTMC.
QMC can be used as a model for quantum computation!

Temporal Logics
Modal logics used to express time–dependent properties.
Example: "In all the reachable states of the system, property A never holds"

(a) LTL

(b) CTL

(a) (b)

Model Checking Recursive Quantum Protocols 21 / 36

Quantum Model Checking (3)

Temporal Operators

f ¬f AXf AFf AGf

EXf EFf EGf A(¬f Uf) E(¬f Uf)

Invariant and Eventually

A (i.e., for all computation paths) and E (i.e., eventually, for some
computation path).

Model Checking Recursive Quantum Protocols 22 / 36

Quantum Model Checking (4)

QCTL
Quantum Computation Tree Logic, it provides also the operators:

Q∼ε[g];
Q =?[g];
qeval((Q =?)[g], ρ);
qprob((Q =?)[g], ρ) = tr(qeval((Q =?)[g], ρ))).

Model Checking Recursive Quantum Protocols 23 / 36

QCTL

Quantum Computation Tree Logic
A QCTL formula is a formula over the following grammar:

Φ ::= a | ¬Φ | Φ ∧ Φ | Q∼ε[Φ] state formula

φ ::= XΦ | ΦU≤kΦ | ΦUΦ path formula

where a ∈ AP , ∼ ∈ {.,&,h}, E ∈ SI(H), k ∈ N.

Example

Q >= 1 [F (s = 5)]

Model Checking Recursive Quantum Protocols 24 / 36

What we did: from Circuits to QMCs

Quip-E
We isolated and extended a Quipper fragment that we called Quip-E which
allows the definition of both standard and tail recursive quantum programs.

Entangλe
We defined a mapping from Quip-E programs to QMCs. We start by
considering a quantum program generated by Quip-E and we define a
bisimilar QMC.

Model Checking Recursive Quantum Protocols 25 / 36

Formal definition of Quip-E program

Definition
A Quip-E program is a circuit in which the result of a measurement is
evaluated and could result in a loop.

Body of Quip-E program

reset: initializes the qubits to |0〉;
unitary: unitary operator applied to a list of qubits;
measure: application of measurement operators to a list of qubits
resulting in a list of bits;
dynamic lift: A bit is lifted to a boolean through the dynamic lift
Quip- per operator;
if-then-else: evaluation of a Boolean expression;
exit On: loop instruction.

Model Checking Recursive Quantum Protocols 26 / 36

From Quip-E to QMC - intuitively

Model Checking Recursive Quantum Protocols 27 / 36

From Quip-E to QMC - intuitively

Model Checking Recursive Quantum Protocols 28 / 36

FromQuip-E to QMC - intuitively

Model Checking Recursive Quantum Protocols 29 / 36

From Quip-E to QMC - intuitively

Model Checking Recursive Quantum Protocols 30 / 36

From Quip-E to QMC - intuitively

Model Checking Recursive Quantum Protocols 31 / 36

Operational Semantics of Quip–E (1)

(reset_at qk , L)
Mk

0−−→ (___, L) (reset_at q, L)
Mk

1−−→ ((X_at qk , L)

(U_at [qi1,...,qij], L)
Ui1,...,ij−−−−→ (___, L)

(m ← measure qk , L)
Mk

i−−→ (___, L[L(m) = i]})
for i ∈ {0, 1}

(bool <- dynamic_lift m, L)
I−→ (___, L[L(bool) = L(m)])

Model Checking Recursive Quantum Protocols 32 / 36

Operational Semantics of Quip–E (2)

L(bool) = i

(if (bool) Body_C1 else Body_C0, L)
I−→ (Body_Ci , L)

for i ∈ {0, 1}

(Body_C1, L)
S−→ (Body_C1’, L′)

(Body_C1 Body_C2, L)
S−→ (Body_C1’ Body_C2, L

′)

(Body_C1, L)
S−→ (___, L′)

(Body_C1 Body_C2, L)
S−→ (Body_C2, L

′)

(___, L)
I−→ (___, L)

Model Checking Recursive Quantum Protocols 33 / 36

Implementation

We implemented Entangλe using the Transformer module of
Quipper. The input quantum program is a Quip-E function and the output
QMC is a QPMC model.

1 The gates in the quantum circuit are grouped together with their
associated qubits, preserving the execution order;

2 we compute the matrix representation of the quantum gates, taking
into account also the conditional branches and the initialization
operators;

3 the last step is the conversion of the list of transitions into QPMC
code.

Model Checking Recursive Quantum Protocols 34 / 36

testInit :: (Qubit) -> Circ RecAction
testInit (q) = do

reset_at q
hadamard_at q
ma <- measure q
bool <- dynamic_lift ma
exitOn bool

s0

s1T

s1F

s2 s3

s4T

s4F

X

M0

M1

H

M0

M1

I

qmc

const matrix A1_T = M0;
const matrix A1_F = M1;
const matrix A2 = PauliX;
const matrix A3 = Hadamard;
const matrix A4_F = M0;
const matrix A4_T = M1;

module testInit
s: [0..4] init 0;
b0: bool init false;

[] (s = 0) -> <<A1_T>> : (s’ = 1) &
(b0’ = true) + <<A1_F>> : (s’
= 1) & (b0’ = false);

[] (s = 1) & b0 -> (s’ = 2);
[] (s = 1) & !b0 -> <<A2>> : (s’ =

2);
[] (s = 2) -> <<A3>> : (s’ = 3);
[] (s = 3) -> <<A4_F>> : (s’ = 4) &

(b0’ = false) + <<A4_T>> : (s’
= 4) & (b0’ = true);

[] (s = 4) & !b0 -> (s’ = 0);
[] (s = 4) & b0 -> true;

endmodule

Model Checking Recursive Quantum Protocols 35 / 36

Conclusion and Questions

TO–DO
optimization of Entangλe to verify more complex quantum
programs;
optimization from the model checking point of view, involving the
automatic verification of more complex properties, i.e., entanglement
and other quantum effects;
translation and verification of more complex, real-world quantum
protocols;
simulation (and translation) of quantum dynamics;
spatial properties verification.

Model Checking Recursive Quantum Protocols 36 / 36

