Geometry and quantum control

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Geometry of Quantum Mechanics in complex projective spaces

Davide Pastorello

Department of Mathematics, University of Trento Trento Institute for Fundamental Physics and Application

Trieste, 18 May 2018

With the support of:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Geometrization of Quantum Mechanics

Describing quantum systems in terms of geometric structures.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Geometrization of Quantum Mechanics

Describing quantum systems in terms of **geometric structures**. Why?

- Standard formulation of Quantum Mechanics presents a mathematical structure that is linear and algebraic (operators in Hilbert spaces)
- Classical Mechanics can be mathematically formulated in a broad and elegant differential geometric framework (symplectic manifolds, Hamiltonian fields, Poisson structures...).

Geometrization of Quantum Mechanics

Describing quantum systems in terms of **geometric structures**. Why?

- Standard formulation of Quantum Mechanics presents a mathematical structure that is linear and algebraic (operators in Hilbert spaces)
- Classical Mechanics can be mathematically formulated in a broad and elegant differential geometric framework (symplectic manifolds, Hamiltonian fields, Poisson structures...).

Phylosophical goal: A unified quantum/classical geometric scenario!

Geometrization of Quantum Mechanics

Describing quantum systems in terms of **geometric structures**. Why?

- Standard formulation of Quantum Mechanics presents a mathematical structure that is linear and algebraic (operators in Hilbert spaces)
- Classical Mechanics can be mathematically formulated in a broad and elegant differential geometric framework (symplectic manifolds, Hamiltonian fields, Poisson structures...).

Phylosophical goal: A unified quantum/classical geometric scenario!

Technical goal: Application of powerful geometric tools that are well-known in Classical Mechanics to quantum problems.

Geometrization of Quantum Mechanics

Some landmarks

- T. W. B. Kibble Geometrization of quantum mechanics, Comm. Math. Phys. 65 (1979)
- A. Ashtekar and T. A. Schilling *Geometry of quantum mechanics*, AIP Conf. Proc. 342 (1995)
- D.C. Brody and L.P. Hughston Geometric quantum mechanics, J. Geom. Phys. 38 (2001)
- J. Clemente-Gallardo and G. Marmo Basics of quantum mechanics, geometrization and some applications to quantum information, Int. J. Geom. Methods Mod. Phys. 5(6) (2008)

Geometry and quantum control

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Summary

Geometric Hamiltonian formulation of QM

Quantum Mechanics in a classical-like fashion From operators to phase space functions

Geometry and quantum control

Notions of quantum controllability Differential geometry and quantum controllability

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Classical tools

Phase space

A classical system with *n* spatial degrees of freedom is described in a 2*n*-dimensional symplectic manifold (\mathcal{M}, ω) .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Classical tools

Phase space

A classical system with *n* spatial degrees of freedom is described in a 2*n*-dimensional symplectic manifold (\mathcal{M}, ω) .

Physical state A point $x = (q^1, ..., q^n, p_1, ..., p_n)$

ション ふゆ く 山 マ チャット しょうくしゃ

Classical tools

Phase space

A classical system with *n* spatial degrees of freedom is described in a 2*n*-dimensional symplectic manifold (\mathcal{M}, ω) .

Physical state A point $x = (q^1, ..., q^n, p_1, ..., p_n)$

Dynamics

A curve in $(a, b) \ni t \mapsto x(t) \in \mathcal{M}$ satisfying Hamilton equations:

$$\frac{dx}{dt} = X_H(x(t))$$

 $H: \mathcal{M} \to \mathbb{R}$ is the Hamiltonian function. X_H is the Hamiltonian vector field, given by: $\omega_x(X_H, \cdot) = dH_x(\cdot)$

Geometry and quantum control

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Classical tools

Statistical description

The state is a ${\mathfrak C}^1\text{-}{\rm function}\ \rho$ on ${\mathcal M}$ and dynamics is described by the Liouville equation

$$\frac{\partial \rho}{\partial t} + \{\rho, H\}_{PB} = 0$$

Poisson bracket: $\{f,g\}_{PB} := \omega(X_f, X_g)$.

Geometry and quantum control 00 00000

Classical tools

Statistical description

The state is a ${\rm C}^1\text{-}{\rm function}\ \rho$ on ${\mathcal M}$ and dynamics is described by the Liouville equation

$$\frac{\partial \rho}{\partial t} + \{\rho, H\}_{PB} = 0$$

Poisson bracket: $\{f,g\}_{PB} := \omega(X_f, X_g)$.

Physical quantities are real smooth function on \mathcal{M} : The Observable *C**-algebra is:

$$\mathcal{A}=\mathfrak{C}^\infty(\mathfrak{M})$$

Classical expecation value of $f : \mathcal{M} \to \mathbb{R}$ on ρ :

$$\langle f \rangle_{\rho} = \int_{\mathcal{M}} f(x) \rho(x) d\mu(x)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

QM in a classical-like fashion

Standard formulation of QM in a Hilbert space \mathcal{H} :

Quantum states: $D(\mathcal{H}) = \{ \sigma \in \mathfrak{B}_1(\mathcal{H}) | \sigma \ge 0, tr(\sigma) = 1 \}$ Quantum observables: Self-adjoint operators in \mathcal{H} .

Pure states (extreme points of the convex set D) are in bijective correspondence with projective rays in \mathcal{H} :

$$\mathcal{P}(\mathcal{H}) = \frac{\mathcal{H}}{\sim} \qquad \psi \sim \phi \iff \exists \alpha \in \mathbb{C} \setminus \{\mathbf{0}\} \ s.t. \ \psi = \alpha \phi$$

QM in a classical-like fashion

Standard formulation of QM in a Hilbert space \mathcal{H} :

Quantum states: $D(\mathcal{H}) = \{ \sigma \in \mathfrak{B}_1(\mathcal{H}) | \sigma \ge 0, tr(\sigma) = 1 \}$ Quantum observables: Self-adjoint operators in \mathcal{H} .

Pure states (extreme points of the convex set D) are in bijective correspondence with projective rays in \mathcal{H} :

$$\mathcal{P}(\mathcal{H}) = \frac{\mathcal{H}}{\sim} \qquad \psi \sim \phi \iff \exists \alpha \in \mathbb{C} \setminus \{\mathbf{0}\} \ \boldsymbol{s.t.} \ \psi = \alpha \phi$$

 $\dim \mathcal{H} = n < +\infty$

 $\mathcal{P}(\mathcal{H})$ is a real (2n-2)-dimensional manifold with the following characterization of tangent space:

$$\rho \in \mathcal{P}(\mathcal{H})$$
: $\forall v \in T_{\rho}\mathcal{P}(\mathcal{H}) \exists A_{v} \in \mathfrak{H}(\mathcal{H}) \text{ s.t. } v = -i[A_{v}, \rho].$

 $\mathfrak{H}(\mathcal{H})$ is the space of hermitian operators on \mathcal{H} .

Geometry and quantum control

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$\mathcal{P}(\mathcal{H})$ as a Kähler manifold

Symplectic form: $\omega_p(u, v) := -i k tr([A_u, A_v]p)$ k > 0Riemannian metric:

$$g_{\rho}(u,v) := -k tr(([A_u, \rho][A_v, \rho] + [A_v, \rho][A_u, \rho])\rho) \qquad k > 0$$

Almost complex form: $j_p : T_p \mathcal{P}(\mathcal{H}) \ni v \mapsto i[v, p] \in T_p \mathcal{P}(\mathcal{H})$ $p \mapsto j_p$ is smooth and $j_p j_p = -id$ for any $p \in \mathcal{P}(\mathcal{H})$:

$$\omega_p(u,v) = g_p(u,j_pv)$$

Geometry and quantum control

$\mathcal{P}(\mathcal{H})$ as a Kähler manifold

Symplectic form: $\omega_p(u, v) := -i k tr([A_u, A_v]p)$ k > 0Riemannian metric:

$$g_{p}(u,v) := -k tr(([A_{u},p][A_{v},p]+[A_{v},p][A_{u},p])p) \qquad k > 0$$

Almost complex form: $j_p : T_p \mathcal{P}(\mathcal{H}) \ni v \mapsto i[v, p] \in T_p \mathcal{P}(\mathcal{H})$ $p \mapsto j_p$ is smooth and $j_p j_p = -id$ for any $p \in \mathcal{P}(\mathcal{H})$:

$$\omega_p(u,v) = g_p(u,j_pv)$$

Quantum observables as phase space functions $\mathcal{O}: \mathfrak{H}(\mathcal{H}) \ni A \mapsto f_A: \mathcal{P}(\mathcal{H}) \to \mathbb{R}$

Equivalence Hamilton/Schrödinger dynamics:

$$\frac{dp}{dt} = -i[H, p(t)] \quad \Leftrightarrow \quad \frac{dp}{dt} = X_{f_H}(p(t))$$

Geometry and quantum control

$\mathcal{P}(\mathcal{H})$ as a Kähler manifold

Symplectic form: $\omega_p(u, v) := -i k tr([A_u, A_v]p)$ k > 0Riemannian metric:

$$g_{\rho}(u,v) := -k tr(([A_u, \rho][A_v, \rho] + [A_v, \rho][A_u, \rho])\rho) \qquad k > 0$$

Almost complex form: $j_p : T_p \mathcal{P}(\mathcal{H}) \ni v \mapsto i[v, p] \in T_p \mathcal{P}(\mathcal{H})$ $p \mapsto j_p$ is smooth and $j_p j_p = -id$ for any $p \in \mathcal{P}(\mathcal{H})$:

$$\omega_p(u,v) = g_p(u,j_pv)$$

Quantum states as Liouville densities $\mathcal{S}: D(\mathcal{H}) \ni \sigma \mapsto \rho_{\sigma}: \mathcal{P}(\mathcal{H}) \to [0, 1]$

Equivalence quantum/classical expectation values:

$$\langle A \rangle_{\rho} = \operatorname{tr}(A\sigma) = \int_{\mathcal{M}} f_{A}(p) \rho_{\sigma}(p) d\mu(p)$$

Geometry and quantum control 00 00000

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

From operators to functions

Definition

A map $f : \mathcal{P}(\mathcal{H}) \to \mathbb{C}$ is called **frame function** if there is $W_f \in \mathbb{C}$ s.t.

$$\sum_{p\in N} f(p) = W_f$$

for any $N \subset \mathcal{P}(\mathcal{H})$ s.t. $d_g(p_1, p_2) = \frac{\pi}{2}$ for $p_1, p_2 \in \mathcal{P}(\mathcal{H})$ with $p_1 \neq p_2$ and N is maximal w.r.t. this property.

From operators to functions

Definition

A map $f : \mathcal{P}(\mathcal{H}) \to \mathbb{C}$ is called **frame function** if there is $W_f \in \mathbb{C}$ s.t.

$$\sum_{p\in N} f(p) = W_f$$

for any $N \subset \mathcal{P}(\mathcal{H})$ s.t. $d_g(p_1, p_2) = \frac{\pi}{2}$ for $p_1, p_2 \in \mathcal{P}(\mathcal{H})$ with $p_1 \neq p_2$ and N is maximal w.r.t. this property.

$$\mathfrak{F}^{2}(\mathfrak{H}):=\{f:\mathfrak{P}(\mathfrak{H})\rightarrow\mathbb{C}|\,f\in\mathcal{L}^{2}(\mathfrak{P}(\mathfrak{H}),\mu),\,\,f\,\text{is a frame function}\}$$

Theorem (V. Moretti, D.P. 2014)

Phase space functions describing quantum observables are real functions in $\mathfrak{F}^2(\mathfrak{H})$ and obtained from operators by:

$$\mathfrak{O}:\mathfrak{H}(\mathfrak{H})\ni A\mapsto f_A \qquad f_A(p)=k\ tr(Ap)+\frac{1-k}{n}\ tr(A) \quad k>0$$

From operators to functions

Definition

A map $f : \mathcal{P}(\mathcal{H}) \to \mathbb{C}$ is called **frame function** if there is $W_f \in \mathbb{C}$ s.t.

$$\sum_{p\in N} f(p) = W_f$$

for any $N \subset \mathcal{P}(\mathcal{H})$ s.t. $d_g(p_1, p_2) = \frac{\pi}{2}$ for $p_1, p_2 \in \mathcal{P}(\mathcal{H})$ with $p_1 \neq p_2$ and N is maximal w.r.t. this property.

$$\mathfrak{F}^{2}(\mathfrak{H}):=\{f:\mathfrak{P}(\mathfrak{H})\rightarrow\mathbb{C}|\,f\in\mathcal{L}^{2}(\mathfrak{P}(\mathfrak{H}),\mu),\,\,f\,\text{is a frame function}\}$$

Theorem (Ashtekar et al. 1995)

A vector field X on $\mathcal{P}(\mathcal{H})$ is the Hamiltonian vector field of a quantum observable (i.e. X(p) = -i[A, p] with $A \in \mathfrak{H}(\mathcal{H})$) if and only if

$$\mathcal{L}_X g = 0$$

C*-algebra of quantum observables in terms of functions

$$\begin{array}{ll} \bigcirc: \mathfrak{H}(\mathcal{H}) \ni A \mapsto f_A & - \text{ linear extension} \to & \bigcirc: \mathfrak{B}(\mathcal{H}) \to \mathcal{F}^2(\mathcal{H}) \\ \mathcal{F}^2(\mathcal{H}) \text{ as C*-algebra of observables} \\ -) \text{ Involution: } A = \bigcirc(f), \ A^* = \bigcirc(\overline{f}); \\ -) \star \text{ - product: } f \star g = \bigcirc(\bigcirc^{-1}(f)\bigcirc^{-1}(g)): \\ f \star h = \frac{i}{2}\{f, h\}_{PB} + \frac{1}{2}G(df, dh) + f \cdot h \qquad k = 1 \\ -) \text{ Norm: } |||f||| = || \bigcirc^{-1}(f) || \\ |||f||| = \frac{1}{k} \left| \left| f - \frac{1-k}{n} \int_{\mathcal{P}(\mathcal{H})} f \ d\mu \right| \right|_{\infty} \qquad k > 0 \end{array}$$

where $d\mu$ is the volume form induced by g.

Geometry and quantum control •0 •00000

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Quantum control

Controlled *n*-level quantum system

$$i\hbar rac{d}{dt}|\psi
angle = \left[H_0 + \sum_{i=1}^m H_i u_i(t)
ight]|\psi(t)
angle \qquad (*)$$

with initial condition $|\psi(0)\rangle = |\psi_0\rangle$.

Pure state controllability

The *n*-level system is **pure state controllable** if for every pair $|\psi_0\rangle, |\psi_1\rangle \in \mathcal{H}$ there exists controls $u_1, ..., u_m$ and T > 0 such that the solution $|\psi\rangle$ of (*) satisfies

$$|\psi(T)\rangle = |\psi_1\rangle$$

Geometry and quantum control

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Quantum control

Controlled *n*-level quantum system

$$i\hbar \frac{d}{dt}U(t) = \left[H_0 + \sum_{i=1}^m H_i u_i(t)\right]U(t)$$
 (**)

with initial condition $U(0) = \mathbb{I}$.

Complete controllability

The *n*-level system is **complete controllable** if for any unitary operator $U_f \in U(n)$ there exist controls $u_1, ..., u_n$ and T > 0 such that the solution U of (**) satisfies

$$U(T) = U_f$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Differential geometry and quantum controllability

Geometric Hamiltonian formulation

$$\dot{p}(t) = X_0(p(t)) + \sum_{i=1}^m X_i(p(t))u_i(t)$$

 X_i are the Hamiltonian fields on $\mathcal{P}(\mathcal{H})$ defined by the classical-like Hamiltonians obtained with our prescription.

Accessibility algebra

The smallest Lie subalgebra \mathcal{C} of the Lie algebra of smooth vector fields on $\mathcal{P}(\mathcal{H})$ containing the fields $X_0, ..., X_m$.

Accessibility distribution

$$\mathfrak{C}(p) := \operatorname{span}\{X(p) \,|\, X \in \mathfrak{C}\}$$

Geometry and quantum control

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (D.P. 2016)

A quantum system is pure state controllable if and only if the following condition is satisfied:

$$T_p \mathcal{P}(\mathcal{H}) = span\{X(p)|X \in \mathcal{C}\}$$

for some $p \in \mathcal{P}(\mathcal{H})$.

The proof is based on this proposition:

$$A \in \mathcal{L} \quad \Longleftrightarrow \quad X_{f_{-iA}} \in \mathcal{C}$$

where \mathcal{L} is the Lie algebra generated by $-iH_0, ..., -iH_1$.

Corollary

A quantum system is completely controllable if and only if

$$\mathcal{C} = \mathfrak{Kill}(\mathcal{P}(\mathcal{H}))$$

Geometry and quantum control $\circ\circ$ $\circ\circ\circ\circ\circ\circ\circ\circ$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

An example

Consider a controlled 4-level quantum system whose dynamical Lie algebra \mathcal{L} is given by the matrices of the form:

$$A = \begin{pmatrix} -ia & c & z & d \\ e & ib & f & w \\ -\overline{z} & d & ia & e \\ f & -\overline{w} & c & -ib \end{pmatrix},$$

where $a, b, c, d, e, f \in \mathbb{R}$ and $z, w \in \mathbb{C}$.

Geometry and quantum control

An example

Consider a controlled 4-level quantum system whose dynamical Lie algebra \mathcal{L} is given by the matrices of the form:

$$A = \begin{pmatrix} -ia & c & z & d \\ e & ib & f & w \\ -\overline{z} & d & ia & e \\ f & -\overline{w} & c & -ib \end{pmatrix},$$

where $a, b, c, d, e, f \in \mathbb{R}$ and $z, w \in \mathbb{C}$. Let p = diag(1, 0, 0, 0) and calculate:

$$X_{\mathcal{A}}(p) = \begin{pmatrix} 0 & -c & -z & -d \\ e & 0 & 0 & 0 \\ -\overline{z} & 0 & 0 & 0 \\ f & 0 & 0 & 0 \end{pmatrix},$$

dim $\mathcal{C}(p) = 6 = \dim T_p \mathcal{P}(\mathcal{H})$. Pure state controllability!

References

- V. Moretti and D.P. *Generalized spherical harmonics, frame functions and Gleason theorem*. Annales Henri Poincaré v. 2013, 14, n.5 (2013)
- D.P. A geometric hamiltonian description of composite quantum systems and quantum entanglement. Int. J. Geom. Methods in Mod. Phys. v. 12, n. 7 (2015)
- V. Moretti and D.P. Frame functions in finite-dimensional quantum mechanics and its hamiltonian formulation on complex projective spaces.Int. J. Geom. Methods Mod. Phys. Vol. 13, No. 02, 1650013. (2016)
- D.P. Geometric Quantum Mechanics and applications. Int. J. Geom. Methods Mod. Phys., 13, 1630017 (2016)
- D.P. A geometric approach to quantum control in projective Hilbert spaces. Rep. on Math. Phys. Vol. 79, No. 1 (2017)

Geometry and quantum control ${\overset{\circ\circ}{_{\circ\circ\circ}}}_{_{\circ\circ\circ\circ\circ}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thank you for your attention!