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Geometric Hamiltonian formulation of QM Geometry and quantum control

Geometrization of Quantum Mechanics

Describing quantum systems in terms of geometric structures.

Why?

• Standard formulation of Quantum Mechanics presents a
mathematical structure that is linear and algebraic (operators
in Hilbert spaces)

• Classical Mechanics can be mathematically formulated in a
broad and elegant differential geometric framework (symplectic
manifolds, Hamiltonian fields, Poisson structures...).

Phylosophical goal: A unified quantum/classical geometric scenario!

Technical goal: Application of powerful geometric tools that are
well-known in Classical Mechanics to quantum problems.
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Geometrization of Quantum Mechanics

Some landmarks

• T. W. B. Kibble Geometrization of quantum mechanics,
Comm. Math. Phys. 65 (1979)

• A. Ashtekar and T. A. Schilling Geometry of quantum
mechanics, AIP Conf. Proc. 342 (1995)

• D.C. Brody and L.P. Hughston Geometric quantum
mechanics, J. Geom. Phys. 38 (2001)

• J. Clemente-Gallardo and G. Marmo Basics of quantum
mechanics, geometrization and some applications to quantum
information, Int. J. Geom. Methods Mod. Phys. 5(6) (2008)
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Geometric Hamiltonian formulation of QM Geometry and quantum control

Classical tools

Phase space
A classical system with n spatial degrees of freedom is described in
a 2n-dimensional symplectic manifold (M, ω).

Physical state
A point x = (q1, ..., qn, p1, ..., pn)

Dynamics
A curve in (a, b) 3 t 7→ x(t) ∈M satisfying Hamilton equations:

dx
dt

= XH(x(t))

H : M→ R is the Hamiltonian function.
XH is the Hamiltonian vector field, given by: ωx(XH , ·) = dHx(·)
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Classical tools
Statistical description
The state is a C1-function ρ on M and dynamics is described by the
Liouville equation

∂ρ

∂t
+ {ρ,H}PB = 0

Poisson bracket: {f , g}PB := ω(Xf ,Xg ).

Physical quantities are real smooth function on M:
The Observable C ∗-algebra is:

A = C∞(M)

Classical expecation value of f : M→ R on ρ:

〈f 〉ρ =

∫
M

f (x)ρ(x)dµ(x)
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QM in a classical-like fashion

Standard formulation of QM in a Hilbert space H:

Quantum states: D(H) = {σ ∈ B1(H)|σ ≥ 0, tr(σ) = 1}
Quantum observables: Self-adjoint operators in H.

Pure states (extreme points of the convex set D) are in bijective
correspondence with projective rays in H:

P(H) =
H

∼
ψ ∼ φ ⇔ ∃α ∈ C \ {0} s.t. ψ = αφ

dimH = n < +∞
P(H) is a real (2n − 2)-dimensional manifold with the following
characterization of tangent space:
p ∈ P(H): ∀v ∈ TpP(H) ∃Av ∈ H(H) s.t. v = −i [Av , p].

H(H) is the space of hermitian operators on H.
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P(H) as a Kähler manifold
Symplectic form: ωp(u, v) := −i k tr([Au,Av ]p) k > 0
Riemannian metric:

gp(u, v) := −k tr(([Au, p][Av , p] + [Av , p][Au, p])p) k > 0

Almost complex form: jp : TpP(H) 3 v 7→ i [v , p] ∈ TpP(H)
p 7→ jp is smooth and jpjp = −id for any p ∈ P(H):

ωp(u, v) = gp(u, jpv)

Quantum observables as phase space functions
O : H(H) 3 A 7→ fA : P(H)→ R

Equivalence Hamilton/Schrödinger dynamics:

dp
dt

= −i [H, p(t)] ⇔ dp
dt

= XfH (p(t))
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Quantum states as Liouville densities
S : D(H) 3 σ 7→ ρσ : P(H)→ [0, 1]

Equivalence quantum/classical expectation values:

〈A〉ρ = tr(Aσ) =
∫
M

fA(p)ρσ(p)dµ(p)
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From operators to functions
Definition
A map f : P(H)→ C is called frame function if there is Wf ∈ C
s.t. ∑

p∈N

f (p) = Wf

for any N ⊂ P(H) s.t. dg (p1, p2) =
π
2 for p1, p2 ∈ P(H) with

p1 6= p2 and N is maximal w.r.t. this property.

F2(H) := {f : P(H)→ C| f ∈ L2(P(H), µ), f is a frame function}

Theorem (V. Moretti, D.P. 2014)
Phase space functions describing quantum observables are real
functions in F2(H) and obtained from operators by:

O : H(H) 3 A 7→ fA fA(p) = k tr(Ap) +
1− k
n

tr(A) k > 0
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Definition
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s.t. ∑

p∈N
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for any N ⊂ P(H) s.t. dg (p1, p2) =
π
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F2(H) := {f : P(H)→ C| f ∈ L2(P(H), µ), f is a frame function}

Theorem (Ashtekar et al. 1995)
A vector field X on P(H) is the Hamiltonian vector field of a
quantum observable (i.e. X (p) = −i [A, p] with A ∈ H(H)) if and
only if

LXg = 0

.
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C*-algebra of quantum observables in terms of functions

O : H(H) 3 A 7→ fA − linear extension→ O : B(H)→ F2(H)

F2(H) as C*-algebra of observables

-) Involution: A = O(f ), A∗ = O(f );
-) ? - product: f ? g = O

(
O−1(f )O−1(g)

)
:

f ? h =
i
2
{f , h}PB +

1
2
G (df , dh) + f · h k = 1

-) Norm: |||f ||| =‖ O−1(f ) ‖

|||f ||| = 1
k

∣∣∣∣∣
∣∣∣∣∣f − 1− k

n

∫
P(H)

f dµ

∣∣∣∣∣
∣∣∣∣∣
∞

k > 0

where dµ is the volume form induced by g .
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Quantum control

Controlled n-level quantum system

i~
d
dt
|ψ〉 =

[
H0 +

m∑
i=1

Hiui (t)

]
|ψ(t)〉 (∗)

with initial condition |ψ(0)〉 = |ψ0〉.

Pure state controllability
The n-level system is pure state controllable if for every pair
|ψ0〉, |ψ1〉 ∈ H there exixst controls u1, ..., um and T > 0 such that
the solution |ψ〉 of (∗) satisfies

|ψ(T )〉 = |ψ1〉

.
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Quantum control

Controlled n-level quantum system

i~
d
dt

U(t) =

[
H0 +

m∑
i=1

Hiui (t)

]
U(t) (∗∗)

with initial condition U(0) = I.

Complete controllability
The n-level system is complete controllable if for any unitary
operator Uf ∈ U(n) there exist controls u1, ..., un and T > 0 such
that the solution U of (∗∗) satisfies

U(T ) = Uf
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Differential geometry and quantum controllability

Geometric Hamiltonian formulation

ṗ(t) = X0(p(t)) +
m∑

i=1

Xi (p(t))ui (t)

Xi are the Hamiltonian fields on P(H) defined by the classical-like
Hamiltonians obtained with our prescription.

Accessibility algebra
The smallest Lie subalgebra C of the Lie algebra of smooth vector
fields on P(H) containing the fields X0, ...,Xm.

Accessibility distribution

C(p) := span{X (p) |X ∈ C}
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Theorem (D.P. 2016)
A quantum system is pure state controllable if and only if the
following condition is satisfied:

TpP(H) = span{X (p)|X ∈ C}

for some p ∈ P(H).

The proof is based on this proposition:

A ∈ L ⇐⇒ Xf−iA ∈ C

where L is the Lie algebra generated by −iH0, ...,−iH1.

Corollary
A quantum system is completely controllable if and only if

C = Kill(P(H))
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An example
Consider a controlled 4-level quantum system whose dynamical Lie
algebra L is given by the matrices of the form:

A =


−ia c z d
e ib f w
−z d ia e
f −w c −ib

 ,

where a, b, c , d , e, f ∈ R and z ,w ∈ C.

Let p = diag(1, 0, 0, 0) and calculate:

XA(p) =


0 −c −z −d
e 0 0 0
−z 0 0 0
f 0 0 0

 ,

dimC(p) = 6 = dimTpP(H). Pure state controllability!



Geometric Hamiltonian formulation of QM Geometry and quantum control

An example
Consider a controlled 4-level quantum system whose dynamical Lie
algebra L is given by the matrices of the form:

A =


−ia c z d
e ib f w
−z d ia e
f −w c −ib

 ,

where a, b, c , d , e, f ∈ R and z ,w ∈ C.
Let p = diag(1, 0, 0, 0) and calculate:

XA(p) =


0 −c −z −d
e 0 0 0
−z 0 0 0
f 0 0 0

 ,

dimC(p) = 6 = dimTpP(H). Pure state controllability!



Geometric Hamiltonian formulation of QM Geometry and quantum control

References

• V. Moretti and D.P. Generalized spherical harmonics, frame
functions and Gleason theorem. Annales Henri Poincaré v. 2013,
14, n.5 (2013)

• D.P. A geometric hamiltonian description of composite
quantum systems and quantum entanglement. Int. J. Geom.
Methods in Mod. Phys. v. 12, n. 7 (2015)

• V. Moretti and D.P. Frame functions in finite-dimensional
quantum mechanics and its hamiltonian formulation on
complex projective spaces.Int. J. Geom. Methods Mod. Phys.
Vol. 13, No. 02, 1650013. (2016)

• D.P. Geometric Quantum Mechanics and applications. Int. J.
Geom. Methods Mod. Phys., 13, 1630017 (2016)

• D.P. A geometric approach to quantum control in projective
Hilbert spaces. Rep. on Math. Phys. Vol. 79, No. 1 (2017)



Geometric Hamiltonian formulation of QM Geometry and quantum control

Thank you for your attention!
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