
../LogoSISSA.png

Introduction Unboundedness Natural Domains Dirac-Coulomb operators

The Touchy Business of
Formal Computations

Matteo Gallone

May 18, 2018

Junior Trieste Quantum Days 2018

1 / 15



../LogoSISSA.png

Introduction Unboundedness Natural Domains Dirac-Coulomb operators

Introduction

“No theorist in his right mind would
have invented quantum mechanics
unless forced by data”

– Craig Hogan

From Axioms:

Phase space: Complex Hilbert space (H = L2(R3, dx))

Observables: Self-adjoint operators on H
Time evolution: Unitary 1-parameter group generated by
Schrödinger equation
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Unboundedness

Unboundedness is unavoidable in Quantum Mechanics:
Heisenberg’s uncertainty principle:

[X ,P] = i

Proof:

[X n,P] = inX n−1 ⇒ ‖[X n,P]‖ = n‖X n−1‖

‖[X n,P]‖= ‖X nP − PX n‖≤ 2‖X n‖‖P‖≤ 2‖X n−1‖‖X‖‖P‖

n

2
≤ ‖X‖‖P‖ ∀n ∈ N

Scientists in the ’20-’30 need to develop the theory of unbounded
operators (von Neumann, Stone, . . . )
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Unbounded operators

Unbounded operator

An unbounded (= not necessarily bounded) operator is a linear
map

T : D(T ) ⊂ H → H

The assignment of the domain is crucial!

Different domains assigned to the same formal operator define
different operators:

eigenvalues

scattering properties

invertibility

. . .
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What can go wrong? (1/2)

Statement

Time evolution associated to i∂tψ = −∂2xψ is unitary (e.g.
‖ψ(t, x)‖L2(I,dx) = ‖ψ(0, x)‖L2(I,dx)) (I = (0, 1) ⊂ R)

{
i∂tψ(t, x) = −∂2xψ(t, x)

ψ(0, x) = e
i+1√

2
x ∈ L2(I, dx)

Look for solutions ψ(t, x) = eωtekx :

Solution: ψ(t, x) = e−te
i+1√

2
x

‖ψ(t, x)‖2L2(I,dx) = e−2t‖ψ(0, x)‖2L2(I,dx)
t→+∞−→ 0

Source of problem: ψ(0, x) /∈ domain of self-adjointness!
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What can go wrong? (2/2)

Statement

Eigenfunctions associated to different eigenvalues are orthogonal

−i
d

dx
ψk(x) = kψk(x) L2(I, dx)

If k ∈ C, ψk(x) = e ikx ∈ L2(I, dx) is an eigenfunction.
To see if they are orthogonal we need to evaluate

〈ψk , ψj〉L2(I,dx) =

∫ 1

0
e−ikxe ijx dx

〈ψj , ψk〉L2(I,dx) =

{
i−ie i(j−k)

j−k j 6= k

1 j = k
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Handbook of Definitions

Closed. T is closed iff D(T ) with the operatorial scalar product:

〈ψ,ϕ〉T := 〈Tψ,Tϕ〉H + 〈ψ,ϕ〉H

is a Hilbert space (it is a Banach space).

Closable/Closure. T , D(T ) = D(T )
‖·‖T

Adjoint T ∗ If D(T ) is dense in H then one defines

D(T ∗) := {f ∈ H | ∃η ∈ H s.t. 〈f ,Tϕ〉H = 〈η, ϕ〉H, ∀ϕ ∈ D(T )}

T ∗f := η

Symmetric. 〈ϕ,Tψ〉H = 〈Tϕ,ψ〉H ∀ϕ,ψ ∈ D(T ). (equiv. T ⊂ T ∗)

Self-adjoint. T = T ∗ and D(T ) = D(T ∗)

Essentially self-adjoint. T is self-adjoint.

Self-adjoint extension. T symmetric, T ⊂ T ⊂ Ts.a. ⊂ T ∗.
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Beyond toy examples

For differential and multiplicative operators, non-self-adjointness is
due to

boundary conditions

singular points of the operator

In principle one can choose a lot of domains for unbounded
operators. If we want to model nature there are some natural
choices.
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Natural domains

Formal operator T =
∑

j cj(i∇)j + V (x), Hilbert space

H = L2(Ω), Ω ⊂ Rn open:

Minimal domain: D(Tmin) = C∞c (Ω \ Γ).
Γ = {x ∈ Ω | V (x) is ’too singular’}
Maximal domain: D(Tmax) = {f ∈ H|Tf ∈ H}.
T acts distributionally.

→ Minimal operator Tmin: (T ,D(Tmin))

→ Maximal operator Tmax : (T ,D(Tmax))

Tmin ⊂ Tmax{
Tmin symmetric

D(Tmin) is dense in H
=⇒ Tmax = T ∗min
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Relativistic Quantum Mechanics

Dirac found the right equation to describe the motion of a 1
2 -spin

particle in the relativistic regime:

i~∂tΨ(t, x) = HΨ(t, x)

Hfree = −ic~α ·∇ + βmc2

αj =

(
0 σj
σj 0

)
, β =

(
1 0
0 −1

)
Ψ(t, x) is a spinor, i.e. Ψ(t, x) ∈ L2(R3,C4). This means

Ψ(t, x) =


Ψ1(t, x)
Ψ2(t, x)
Ψ3(t, x)
Ψ4(t, x)


e− spin up
e− spin down
???
???
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Relativistic Hydrogen Atom

Model of the hydrogen atom with relativistic kinetic energy

Hν = −i~cα ·∇ + βmc2 +
ν

|x |
1

It has been used to compute bond states energies:

En = mc2
(

1 +
ν2/c2

(n +
√

1− (ν2/c2))2

)−1/2
Correct non-relativistic limit

En −mc2
c→∞−→ − mν2

2(n + 1)2

Correct experimental prediction (fine-structure corrections)

Break-down of the formula: If |ν| > c2 (Z ≈ 137) we have
imaginary eigenvalues!
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History of the problem

c = ~ = 1

1948 - 1955: Rellich and Kato proved independently essentially
self-adjointness for |ν| < 1

2

1970: Rejtö proved essentially self-adjointness for |ν| < 3
4

1971-1972: Weidmann, Schmincke, Rejtö and Gustafsson proved

Essential-self adjointness for |ν| ≤
√
3
2 (well-posedness)

Non essential self-adjointness for |ν| >
√
3
2 (ill-posedness)

2007: Voronov, Gitman, Tyutin classification ’a la von Neumann’
of the extensions (abstract)

2013: Hogreve attempt of classification in terms of boundary
conditions at r = 0

(M. Gallone, Self-adjoint extensions of Dirac Operator with Coulomb Potential,

Advances in Quantum Mechanics, Springer, 2017)
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Classification of extensions

2018: M.G. and A. Michelangeli proved that if ν ∈ (
√
3
2 , 1) then

f ∈ D(H∗) have asymptotics

f = ar−
√
1−ν2 + br

√
1−ν2 + o(r1/2) as r → 0

The choice of γ ∈ R ∪ {∞} defines a self-adjoint realisation
through the boundary condition

a = (cνγ + dν)b

cν and dν are explicit (but not very illuminating!)

Estimate of the ground state

|E0(γ)| =
|γ|

|γ|
√

1− ν2 + 1

(M. Gallone and A. Michelangeli, Self-adjoint realisations of the Dirac-Coulomb

Hamiltonian for heavy nuclei, Analysis and Math Phys, 2018)
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Eigenvalues

Boundary condition =⇒ explicit formula for EV

F(E ) = cνγ + dν

-1.0 -0.5 0.5 1.0
arctan(γ)

-1.0

-0.5

0.5

1.0
E

(M. Gallone and A. Michelangeli, Discrete spectra for critical Dirac-Coulomb

Hamiltonians, Journal Math Phys, 2018)
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Thank you for your attention
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