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Introduction
Introduction

“No theorist in his right mind would
have invented quantum mechanics
unless forced by data”

— Craig Hogan

From Axioms:

o Phase space: Complex Hilbert space (% = L?(IR3, dx))
@ Observables: Self-adjoint operators on H

@ Time evolution: Unitary 1-parameter group generated by
Schrédinger equation



Unboundedness
Unboundedness

Unboundedness is unavoidable in Quantum Mechanics:
Heisenberg's uncertainty principle:

[X,P] =i
Proof:

X7 P =inx" X7 = XY
X7, Plll= 1X"P — PX7< 21 X7 | PlL< 20X X 1P|
n
Z<IXNPI vneN

Scientists in the '20-'30 need to develop the theory of unbounded
operators (von Neumann, Stone, ...)



Unboundedness
Unbounded operators

Unbounded operator

An unbounded (= not necessarily bounded) operator is a linear

map
T:D(T)YCH—-H

The assignment of the domain is crucial!
Different domains assigned to the same formal operator define
different operators:

@ eigenvalues

@ scattering properties

@ invertibility



Unboundedness

What can go wrong? (1/2)

Time evolution associated to i0;1) = —021) is unitary (e.g.
10(t, )| 2(z,ax) = 110, X)|12(z,0)) (Z = (0,1) CR)

i0pp(t, x) = —029(t, x)
b(0,x) = ev:* € L(T, dx)
Look for solutions ¢(t, x) = e“fek~:

Solution: ¥(t,x) = e~ te\vi®

t—+00
0

1t M E2z.a0) = €2 1900, )12 7,09

Source of problem: (0, x) ¢ domain of self-adjointness!



Unboundedness

What can go wrong? (2/2)

Eigenfunctions associated to different eigenvalues are orthogonal \

) = k) AT o)

If k € C, ¥x(x) = e € L%(T,dx) is an eigenfunction.
To see if they are orthogonal we need to evaluate

1 . .
<¢k7wj>L2(Z,dx) :/O e*lkxeljx dx

i—iell—k)

<¢J7 ¢k>L2(I,dx) {1 =k



Natural Domains
Handbook of Definitions

Closed. T is closed iff D(T) with the operatorial scalar product:
(W, o)1 = (T, To)u + (¥, o)n
is a Hilbert space (it is a Banach space).
Closable/Closure. T, D(T) = W”AHT
Adjoint T If D(T) is dense in H then one defines
D(T"):={f e H|IneH st. (£, To)u = (n,¢)u, Ve € D(T)}
T f:=n
Symmetric. (o, TY)y = (T, ¥)u Yo, € D(T). (equiv. T C T7)
Self-adjoint. T = T" and D(T) =D(T")
Essentially self-adjoint. T is self-adjoint.

Self-adjoint extension. T symmetric, T C T C T.a C T*.



Natural Domains
Beyond toy examples

For differential and multiplicative operators, non-self-adjointness is
due to

@ boundary conditions

@ singular points of the operator

In principle one can choose a lot of domains for unbounded
operators. If we want to model nature there are some natural
choices.



Natural Domains
Natural domains

Formal operator T =3}, ¢i(iVY + V(x), Hilbert space
H = L%(Q), Q C R” open:
e Minimal domain: D(T,,;,) = C(Q\ ).
N={x e Q| V(x) is 'too singular'}
e Maximal domain: D(T.x) = {f € H|Tf € H}.
T acts distributionally.

— Minimal operator Tpjn: (T,D(Thmin))
— Maximal operator T,,..: (T,D(Tmax))

Tmin C 7—max

Tmin SYymmetric
min y . . :> TmaX — ;:”n
D(Tmin) is dense in ‘H



Dirac-Coulomb operators
Relativistic Quantum Mechanics

Dirac found the right equation to describe the motion of a %-spin

particle in the relativistic regime:
iho:V(t,x) = HY(t, x)
Hfree = —icho - V + Smc?

0 o 1 0
v 8) (0 5)

W(t, x) is a spinor, i.e. W(t,x) € L?(R3,C*). This means

Vy(t,x) e~ spin up
| Yot x) e~ spin down
V0= 1 yy(e x) 77
Wy (t, x) [
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Dirac-Coulomb operators

Relativistic Hydrogen Atom

Model of the hydrogen atom with relativistic kinetic energy

H, = —ihca - V + Bmc? + ’—V’]l
X

It has been used to compute bond states energies:

v?/c? —-1/2
(n+1- (1/2/c2))2>

E, = mc2<1 +

¥ Correct non-relativistic limit

c—o mv
E,— mc? =% —

¥ Correct experimental prediction (fine-structure corrections)

@ Break-down of the formula: If [v| > ¢? (Z ~ 137) we have

imaginary eigenvalues!
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Dirac-Coulomb operators
History of the problem

c=h=1

1948 - 1955: Rellich and Kato proved independently essentially
self-adjointness for |v| < 1

1970: Rejto proved essentially self-adjointness for |v| < %
1971-1972: Weidmann, Schmincke, Rejto and Gustafsson proved
@ Essential-self adjointness for |v| < § (well-posedness)
e Non essential self-adjointness for |v| > § (ill-posedness)
2007: Voronov, Gitman, Tyutin classification 'a la von Neumann’
of the extensions (abstract)

2013: Hogreve attempt of classification in terms of boundary
conditions at r =0

(M. Gallone, Self-adjoint extensions of Dirac Operator with Coulomb Potential,
Advances in Quantum Mechanics, Springer, 2017)
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Dirac-Coulomb operators
Classification of extensions

2018: M.G. and A. Michelangeli proved that if v € (‘[ 1) then

e f € D(H*) have asymptotics
f=ar V1”2 L brV1V 4 o(r1/2) as r — 0

@ The choice of 7 € RU {00} defines a self-adjoint realisation
through the boundary condition
a=(¢+d,)b

¢, and d, are explicit (but not very illuminating!)
@ Estimate of the ground state
Bl = L
y[vV1—12+1
(M. Gallone and A. Michelangeli, Self-adjoint realisations of the Dirac-Coulomb

Hamiltonian for heavy nuclei, Analysis and Math Phys, 2018)
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Dirac-Coulomb operators

Eigenvalues
Boundary condition == explicit formula for EV
S(E) =7+ dy
E
1.0

arctan(y)

L

—_

-1.0

(M. Gallone and A. Michelangeli, Discrete spectra for critical Dirac-Coulomb
Hamiltonians, Journal Math Phys, 2018)
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Thank you for your attention
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