The Touchy Business of Formal Computations

Matteo Gallone

May 18, 2018

Junior Trieste Quantum Days 2018

Introduction

"No theorist in his right mind would have invented quantum mechanics unless forced by data"

- Craig Hogan

From Axioms:

- **Phase space:** Complex Hilbert space $(\mathcal{H} = L^2(\mathbb{R}^3, dx))$
- **Observables:** Self-adjoint operators on \mathcal{H}
- **Time evolution:** Unitary 1-parameter group generated by Schrödinger equation

Introduction Unboundedness Natural Domains Dirac-Coulomb operators

Unboundedness

Unboundedness is **unavoidable** in Quantum Mechanics: Heisenberg's uncertainty principle:

$$[X, P] = i$$

Proof:

$$[X^n, P] = inX^{n-1} \qquad \Rightarrow \qquad \|[X^n, P]\| = n\|X^{n-1}\|$$

 $||[X^{n}, P]|| = ||X^{n}P - PX^{n}|| \le 2||X^{n}|| ||P|| \le 2||X^{n-1}|| ||X|| ||P||$

$$\frac{n}{2} \le \|X\| \|P\| \qquad \forall n \in \mathbb{N}$$

Scientists in the '20-'30 need to develop the theory of **unbounded operators** (von Neumann, Stone, ...)

Unbounded operators

Unbounded operator

An unbounded (= not necessarily bounded) operator is a linear map $\mathcal{T}:\mathcal{D}(\mathcal{T})\subset\mathcal{H}\rightarrow\mathcal{H}$

The assignment of the domain is crucial!

Different domains assigned to the same formal operator define **different operators:**

- eigenvalues
- scattering properties
- invertibility
- . . .

What can go wrong? (1/2)

Statement

Time evolution associated to $i\partial_t \psi = -\partial_x^2 \psi$ is unitary (e.g. $\|\psi(t,x)\|_{L^2(\mathcal{I},dx)} = \|\psi(0,x)\|_{L^2(\mathcal{I},dx)}$) $(\mathcal{I} = (0,1) \subset \mathbb{R})$

$$\begin{cases} \mathrm{i}\partial_t \psi(t,x) = -\partial_x^2 \psi(t,x) \\ \psi(0,x) = e^{\frac{\mathrm{i}+1}{\sqrt{2}}x} \quad \in L^2(\mathcal{I},dx) \end{cases}$$

Look for solutions $\psi(t, x) = e^{\omega t} e^{kx}$: Solution: $\psi(t, x) = e^{-t} e^{\frac{i+1}{\sqrt{2}}x}$

$$\|\psi(t,x)\|_{L^{2}(\mathcal{I},dx)}^{2} = e^{-2t} \|\psi(0,x)\|_{L^{2}(\mathcal{I},dx)}^{2} \stackrel{t \to +\infty}{\longrightarrow} 0$$

Source of problem: $\psi(0, x) \notin$ domain of self-adjointness!

What can go wrong? (2/2)

Statement

Eigenfunctions associated to different eigenvalues are orthogonal

$$-i\frac{d}{dx}\psi_k(x)=k\psi_k(x)\qquad L^2(\mathcal{I},dx)$$

If $k \in \mathbb{C}$, $\psi_k(x) = e^{ikx} \in L^2(\mathcal{I}, dx)$ is an eigenfunction. To see if they are orthogonal we need to evaluate

$$\langle \psi_k, \psi_j \rangle_{L^2(\mathcal{I}, dx)} = \int_0^1 e^{-ikx} e^{ijx} dx$$

$$\langle \psi_j, \psi_k \rangle_{L^2(\mathcal{I}, dx)} = \begin{cases} \frac{i - i e^{i(j-k)}}{j-k} & j \neq k \\ 1 & j = k \end{cases}$$

Handbook of Definitions

Closed. T is closed iff $\mathcal{D}(T)$ with the operatorial scalar product:

 $\langle \psi, \varphi \rangle_{\mathcal{T}} := \langle T\psi, T\varphi \rangle_{\mathcal{H}} + \langle \psi, \varphi \rangle_{\mathcal{H}}$

is a Hilbert space (it is a Banach space).

Closable/Closure. \overline{T} , $\mathcal{D}(\overline{T}) = \overline{\mathcal{D}(T)}^{\|\cdot\|_{\mathcal{T}}}$

Adjoint T^* If $\mathcal{D}(T)$ is dense in \mathcal{H} then one defines

 $\mathcal{D}(\mathcal{T}^*) := \{ f \in \mathcal{H} \mid \exists \eta \in \mathcal{H} \text{ s.t. } \langle f, T\varphi \rangle_{\mathcal{H}} = \langle \eta, \varphi \rangle_{\mathcal{H}}, \, \forall \varphi \in \mathcal{D}(\mathcal{T}) \}$ $\mathcal{T}^*f := \eta$

Symmetric. $\langle \varphi, T\psi \rangle_{\mathcal{H}} = \langle T\varphi, \psi \rangle_{\mathcal{H}} \ \forall \varphi, \psi \in \mathcal{D}(T).$ (equiv. $T \subset T^*$)

Self-adjoint. $T = T^*$ and $\mathcal{D}(T) = \mathcal{D}(T^*)$

Essentially self-adjoint. \overline{T} is self-adjoint.

Self-adjoint extension. T symmetric, $T \subset \overline{T} \subset T_{s.a.} \subset T^*$.

Beyond toy examples

For differential and multiplicative operators, non-self-adjointness is due to

- boundary conditions
- singular points of the operator

In principle one can choose a lot of domains for unbounded operators. If we want to model nature there are some **natural** choices.

Natural domains

Formal operator $T = \sum_j c_j (i\nabla)^j + V(x)$, Hilbert space $\mathcal{H} = L^2(\Omega), \ \Omega \subset \mathbb{R}^n$ open:

- Minimal domain: $\mathcal{D}(T_{min}) = C_c^{\infty}(\Omega \setminus \Gamma)$. $\Gamma = \{x \in \Omega \mid V(x) \text{ is 'too singular'}\}$
- Maximal domain: $\mathcal{D}(T_{max}) = \{f \in \mathcal{H} | Tf \in \mathcal{H}\}.$ T acts distributionally.
- \rightarrow Minimal operator T_{min} : $(T, \mathcal{D}(T_{min}))$
- \rightarrow Maximal operator T_{max} : $(T, \mathcal{D}(T_{max}))$

$$T_{min} \subset T_{max}$$

$$\begin{cases} T_{min} \text{ symmetric} \\ \mathcal{D}(T_{min}) \text{ is dense in } \mathcal{H} \end{cases} \implies T_{max} = T_{min}^*$$

Relativistic Quantum Mechanics

Dirac found the right equation to describe the motion of a $\frac{1}{2}$ -spin particle in the relativistic regime:

$$\begin{split} \mathrm{i}\hbar\partial_t\Psi(t,x) &= H\Psi(t,x)\\ H_{\mathrm{free}} &= -\mathrm{i}c\hbar\boldsymbol{\alpha}\cdot\boldsymbol{\nabla} + \beta mc^2\\ \alpha_j &= \begin{pmatrix} 0 & \sigma_j\\ \sigma_j & 0 \end{pmatrix}, \qquad \beta = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix} \end{split}$$

 $\Psi(t,x)$ is a **spinor**, i.e. $\Psi(t,x)\in L^2(\mathbb{R}^3,\mathbb{C}^4)$. This means

$$\Psi(t,x) = \begin{pmatrix} \Psi_1(t,x) \\ \Psi_2(t,x) \\ \Psi_3(t,x) \\ \Psi_4(t,x) \end{pmatrix} \qquad \begin{array}{l} e^- \text{ spin up} \\ e^- \text{ spin down} \\ ??? \\ ??? \\ ??? \end{array}$$

Introduction Unboundedness Natural Domains Dirac-Coulomb operators

Relativistic Hydrogen Atom

Model of the hydrogen atom with relativistic kinetic energy

$$H_{\nu} = -\mathrm{i}\hbar c \boldsymbol{lpha} \cdot \boldsymbol{
abla} + eta m c^2 + rac{
u}{|x|}\mathbb{1}$$

It has been used to compute bond states energies:

$$E_n = mc^2 \left(1 + \frac{\nu^2/c^2}{(n + \sqrt{1 - (\nu^2/c^2)})^2} \right)^{-1/2}$$

😃 Correct non-relativistic limit

$$E_n - mc^2 \stackrel{c \to \infty}{\longrightarrow} - \frac{m\nu^2}{2(n+1)^2}$$

- Correct experimental prediction (fine-structure corrections)
- Break-down of the formula: If $|\nu| > c^2$ ($Z \approx 137$) we have imaginary eigenvalues!

History of the problem

 $c = \hbar = 1$

1948 - **1955**: Rellich and Kato proved independently essentially self-adjointness for $|\nu| < \frac{1}{2}$

1970: Rejtö proved essentially self-adjointness for $|\nu| < \frac{3}{4}$

1971-1972: Weidmann, Schmincke, Rejtö and Gustafsson proved

- Essential-self adjointness for $|\nu| \leq \frac{\sqrt{3}}{2}$ (well-posedness)
- Non essential self-adjointness for $|\nu| > \frac{\sqrt{3}}{2}$ (ill-posedness)

2007: *Voronov, Gitman, Tyutin* classification 'a la von Neumann' of the extensions (abstract)

2013: Hogreve attempt of classification in terms of boundary conditions at r = 0

(M. Gallone, *Self-adjoint extensions of Dirac Operator with Coulomb Potential*, Advances in Quantum Mechanics, Springer, 2017)

Classification of extensions

2018: *M.G.* and *A. Michelangeli* proved that if $\nu \in (\frac{\sqrt{3}}{2}, 1)$ then

- $f \in \mathcal{D}(H^*)$ have asymptotics $f = ar^{-\sqrt{1-\nu^2}} + br^{\sqrt{1-\nu^2}} + o(r^{1/2})$ as $r \to 0$
- The choice of $\gamma \in \mathbb{R} \cup \{\infty\}$ defines a self-adjoint realisation through the boundary condition

$$oldsymbol{a}=(c_{
u}\gamma+d_{
u})oldsymbol{b}$$

 c_{ν} and d_{ν} are explicit (but not very illuminating!)

• Estimate of the ground state

$$|E_0(\gamma)| = \frac{|\gamma|}{|\gamma|\sqrt{1-\nu^2}+1}$$

(M. Gallone and A. Michelangeli, *Self-adjoint realisations of the Dirac-Coulomb Hamiltonian for heavy nuclei*, Analysis and Math Phys, 2018)

Eigenvalues

(M. Gallone and A. Michelangeli, *Discrete spectra for critical Dirac-Coulomb Hamiltonians*, Journal Math Phys, 2018)

Thank you for your attention