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Abstract

In general relativity, the causal structure between events is dynamical, but it is definite and observer-
independent; events are point-like and the membership of an event A in the future or past light-cone of an
event Bis an observer-independent statement. When events are defined with respect to quantum systems
however, nothing guarantees that the causal relationship between A and B is definite. We propose to
associate a causal reference frame corresponding to each event, which can be interpreted as an observer-
dependent time according to which an observer describes the evolution of quantum systems. In the causal
reference frame of one event, this particular event is always localised, but other events can be ‘smeared out’ in
the future and in the past. We do not impose a predefined causal order between the events, but only require
that descriptions from different reference frames obey a global consistency condition. We show that our new
formalism is equivalent to the pure process matrix formalism (Aradjo et al 2017 Quantum 1 10). The latter is
known to predict certain multipartite correlations, which are incompatible with the assumption of a causal
ordering of the events—these correlations violate causal inequalities. We show how the causal reference
frame description can be used to gain insight into the question of realisability of such strongly non-causal
processes in laboratory experiments. As another application, we use causal reference frames to revisit a
thought experiment Zych et al (arXiv:1708.00248) where the gravitational time dilation due to a massive
object in a quantum superposition of positions leads to a superposition of the causal ordering of two events.

1. Introduction

The usual formalism of quantum mechanics explicitly depends on a background space—time; this is indeed one
of the major conceptual obstacles to a quantum theory of gravity [ 1-4]. In quantum field theory, we must first
specify a space—time with a fixed metric, before we can define quantum fields as operator-valued distributions
on this space—time. Matter is described by quantum mechanics, and it is allowed to be in a quantum
superposition of two positions. But since Einstein’s equations relates the mass-energy distribution to the metric,
we expect something like a ‘quantum superposition of spacetime metrics’ to accompany the superposition of
position of the matter [5]. As remarked by Butterfield and Isham, once we embark on constructing a quantum
theory of gravity, we expect some sort of quantum fluctuations in the metric, and so also in the causal structure. But in
that case, how are we to formulate a quantum theory with a fluctuating causal structure [6]?

Regardless of the specific details of an underlying theory of quantum gravity, the superposition principle makes it
reasonable to expect that in some low-energy limit (whose precise nature could only be rigorously established from a
complete theory) quantum superpositions of classical solutions to Einstein’s equations can occur. In the recent work
by Zych et al [ 7], it is argued that a quantum superposition of matter could lead to the quantum superposition of the
causal orders of two events [8], due to gravitational time-dilation. Their description of the situation proceeds from the
point of view of a far-away observer who is not affected by the gravitational field. One might question whether such an
outside description is necessary, and ask whether indefinitely-causal processes admit a relational description [9], from
the point of view of the local observers.
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In general relativity, events are defined with respect to localised physical systems (for example, the
intersection of the world-lines of two particles is an event), and causality is a relationship between events. A
classical event is ‘point-like’: mathematically it is represented by an equivalence class, with respect to the
diffeomorphism group, of points on the space—time manifold. Can a similar definition of events be provided for
quantum systems, and if so, will the point-like nature of events persist?

In this work we provide an operational definition of events for quantum systems, and study causality as the
relationship between such events. We formalise this in section 2, where we associate an observer to each event,
and postulate a corresponding causal reference frame, which may be interpreted as an observer-dependent time
that the observer uses to parametrise the evolution of quantum systems. We do not preimpose a well-defined
global ordering of the events; we tolerate that according to one event’s causal reference frame, the other events
might not necessarily be localised in the future or in the past. Instead, we require a weaker consistency condition:
all observers should agree about the evolution connecting the state in the distant past to the state in the distant
future. Thus, the observer-independent localisation of events in general relativity—the fact that events can be
modelled as points on a space-time manifold that is common to all observers— is weakened, but the consistency
condition guarantees that the global causal structure (mathematically, the corresponding process matrix) is still
observer-independent.

There is a concrete need to understand how the usual ideas of causality (which depend on a fixed classical
metric) are modified by quantum mechanics; formalisms that may help address this question have been
proposed by Hardy [10—13] and Oeckl [14—16]. The process matrix formalism [17] is closely related to the above
approaches, and also makes it possible to study multipartite quantum correlations without the assumption of a
definite causal order between the parties. The quantum switch [ 18] is an example of a non-causal process that
has been implemented in the laboratory [19, 20]. Other processes can violate device-independent causal
inequalities; unfortunately these processes are so far lacking a physical interpretation. Non-causal processes
offer interesting advantages for information processing [8, 21-26], so it is important to understand which of
them could in principle be implemented in the laboratory. Recently, Aratjo et al [27] have defined pure
processes (that can be understood as unitary supermaps) and proposed a purification postulate, which rules out
processes that do not admit a purification. One of their motivations for imposing this requirement is that only
purifiable processes are compatible with the cherished reversibility of the fundamental laws of physics, in that
they do not cause ‘information paradoxes’. Nonetheless, some pure processes are known to violate causal
inequalities, showing that purifiability alone is not enough to single out the processes with a known physical
implementation.

In section 3, we show that there is a one-to-one correspondence between pure process matrices and our new
description of quantum causal structures in terms of causal reference frames. This equivalence yields a different
physical justification for the purification postulate of [27]: pure processes are those that allow an (observer-
dependent) description in terms of a quantum system evolving in time. We show how known examples of
processes can be understood in terms of causal reference frames. Causally ordered processes are those for which
the locality of events is observer independent: in the causal reference frame of any event, all other events are
localised either in the past or in the future. A more interesting example is the quantum switch, where according
to event A’s causal reference frame, event Bis in a controlled superposition of being in the future or in the past
(and vice-versa). In section 4, we study a new example of a causal inequality violating pure tripartite process,
obtained by taking the time-reverse of a known non-causal classical process [27, 28]. We point out some curious
features in the causal frame description of this process, which may explain why such processes do not have a
known realisation in the laboratory.

Finally, in section 6, we revisit the thought experiment of the gravitational quantum switch, and show how
causal reference frames can be applied in that context. We show how a judicious change of coordinates can be
used to bring two different classical spacetimes into a form that corresponds to the causal reference frame of a
particular event. We then invoke the superposition principle and obtain a representation of the gravitational
quantum switch, in the causal reference frame of that event.

The consequences of the fact that quantum mechanical events do not occur at a well-defined instant in time
has been studied by many authors, including among others [29-34], and the lack of a ‘common time reference’
shared between the parties in the quantum switch was noted in [35]. Motivated by the question of whether
experimental implementations of the quantum switch can be considered to be genuine, Oreshkov recently
argued that in bipartite pure processes, the parties can be said to act on ‘time-delocalised subsystems’ [36]. Our
approach is complementary and seeks to describe the time evolution of a quantum system according to a
reference frame associated to one of the parties. In section 5 we comment on the mathematical link between the
two approaches, and answer in the affirmative to a question that was raised in [36] concerning the existence of a
specific representation for all pure multipartite processes.
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2. Quantum theory in the frame of a localised observer

2.1.Events and causality

According to Wald’s influential textbook on general relativity [37], we can consider space and time (=space—time)
to be a continuum composed of events, where each event can be thought of as a point of space at an instant of time. The
diffeomorphism invariance of general relativity brings difficulties to the view that points in the space—time
manifold have a physical meaning, via the famous hole argument. If one wants to give physical meaning to the
points in the space-time manifold, then one must conclude that the dynamics of general relativity is
underdetermined: a set of initial conditions for the gravity and matter fields (for example on a space-like
hypersurface) does not uniquely determine the values for the fields at other points of space—time, due to the
gauge-symmetry corresponding to diffeomorphism invariance. We refer the reader to the reviews [38, 39] and
references therein for a detailed treatment of the hole arguments and its implications.

Instead, events can be meaningfully defined with respect to physical systems. For example, it might be
possible to identify an event unambiguously via statements such as ‘the place in space—time where a particular
clock reads 10 o’clock’, or ‘the place in space—time where these two billiard balls collide with each other’. More
generally, some authors (going all the way back to Einstein) have defined events operationally and in a
diffeomorphism-invariant manner via the coincidences of fields or worldlines: an incomplete selection of such
approaches is [ 13, 40-42]. After the physical identification of an event is made, the locality of an event—its
point-like nature—is observer independent: spatiotemporally distant observers will also agree that the event
happened at a some space—time point.

Once a set events has been identified with respect to physical systems, we can start asking about the causal
ordering between those events. This is done by postulating observers at these events that may (or may not) signal
to each other by manipulating physical systems. The inclusion of observers (and the ‘free choice’ assumption for
some of their actions) allows us to characterise a causal structure by the possibilities it offers for signalling. In
relativity, the analysis of the causal relations between events is conceptually straightforward and is dictated by the
space—time metric. An event Bis contained in the causal future of an event A if there exists a future-directed
space—time path connecting A to B such that the tangent vector to this path is everywhere time-like or null. If this
is the case, then A can signal to B (an intervention at A can in principle affect the probabilities for observations at
B); otherwise signalling from A to B is impossible. Interestingly, the information about the causal structure
between all points of a space—time is sufficient to reconstruct the topology of space—time, as well as the metric up
to a conformal transformation [43]. This fact suggests that studying the causal structures allowed by quantum
mechanics could lead to insights about the nature of space—time in the quantum regime.

Given that our most fundamental theory of matter is quantum mechanics, it is natural to wish for a
definition of ‘quantum events’ in terms of quantum systems. There are difficulties in following the strategy of
general relativity, and defining space—time via coincidences of quantum fields, because the matter fields
generally do not take well-defined values and are instead represented by operators on a Hilbert space. But one
also cannot rely on the existence of classical ‘rods and clocks’ to define events: as a concrete example, consider
spontaneous emission—the phenomena by which the interaction of an atom with the quantised
electromagnetic field makes the excited states of the atom decay. Suppose that an atom is prepared in an excited
state, while the electromagnetic field is in the vacuum state. To this preparation is associated a probability for a
photon to be detected by a nearby detector, after a certain amount of external time has elapsed. The detection of
the photon by the detector defines an event, but this event does not occur at a pre-defined value of the
background time. This simple example motivates our requirement that quantum mechanical events (such as the
‘clicking’ of a detector) must be identified with respect to physical systems, rather than by referring to an external
classical space—time.

In this work, we take an operational approach that does not refer to a background space—time, and identify
events with basic experimental procedures that act on quantum systems. More precisely, an event is
operationally defined with respect to alocalised physical system (we refer to the region in which this system is
localised as a laboratory’) and consists in four ‘instantaneous’ steps

1. Heralding: a signal asserts that the system has entered the laboratory”.

2. Intervention: a choice x is made for the operation to be applied on the system.

* The heralding step is actually quite subtle to treat in full generality. The signal could come from a measurement on the incoming quantum
system, from a classical clock inside the laboratory (waiting until a specific time at which the system is guaranteed to arrive), etc. We will
assume that the heralding does not disturb the state of the system and that it happens with probability one (the system is guaranteed to
eventually enter the lab). This last assumption is a restriction on the generality of the approach: there are physically relevant situations where
the system only enters the lab with some probability, and it would be interesting to further investigate how one can treat such probabilistic
events.
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Figure 1. The input system is described by density operator p on the Hilbert space Aj, and the entering of the system in the laboratory
heralds the event. After a choice of setting x and the recording of an outcome a, the (unnormalised) state of the output system is

Mﬂ\x(/))'

3. Observation: a classical outcome a is recorded.

4. Output: a physical system (whose state generally depends on x and a) exits the laboratory.

In quantum theory on finite-dimensional Hilbert spaces, we associate a Hilbert space A; to the input system
of the laboratory, and Ao to its output system. Figure 1 depicts the intervention, observation, and output steps.
In the intervention step, a choice x of a quantum instrument that acts on the input quantum system is made: this
is represented by a collection { M, : L(A;) — L(Ao)} of completely positive maps such that outcome a
occurs with probability p(alx) = tr(M,)«(p)), when the input state is p. The output state is then

Malx(pAl)
tr(Ma(p)

Ap

()

The normalisation of probabilities enforces that ) , M, is a completely-positive trace-preserving (CPTP) map
forall x.

2.2. The causal reference frame of an event

In this work, we study causality by using operationally defined events as our basic ingredients, rather than relying
on abackground space and time. We associate to each event an observer, from whose point of view we may
describe physics; we will sometimes use the term observer-event to emphasise this. To make a connection with
the usual time-ordered descriptions of physics, we postulate that there is a causal reference frame (which can be
interpreted as an observer-dependent time function) associated to each observer-event, according to which this
eventislocalised in space and in time. According to this reference frame, there should be a well-defined
evolution from the past to the present, and from the present to the future.

As discussed in the previous section, events are defined with respect to a quantum system. We will consider
events that are defined with respect to a subsystem of some ‘global’ quantum system whose Hilbert space is H.
This Hilbert space can be decomposed as H = A; ® E,, where A;is identified with the input space of Alice’s
laboratory, and where E, is an ‘environment’ on which Alice acts as the identity. The output Hilbert space of
Alice’s laboratory is Ao and it is assumed to be isomorphic to A;”. If we assume that the global quantum system
‘H is isolated at times other than that of the event, then the evolutions from Pto A; ® E4, and from Ag ® E4 to
Fare unitary. Thus there exists unitaries [ : P — A; ® Egjand & : Ap ® E4 — F such thatthe global
evolution from past to future, when Alice performs the quantum instrument { M, } is

$ro(Mgflo @ I5) o my, ©)
where 4 (p) = Tl4pIlYy, ¢,(p) = B p®P),, and T % is the identity map on the environment degrees of freedom.
If the state in the distant pastis p*, the outcome a of the instrument occurs with probability

Itis not areal restriction to impose that A; = Ao, because we can emulate any process that has dim A; = dim A by enlarging the smallest
Hilbert space and tracing over the unwanted dimensions. It is convenient to label the Hilbert spaces of the global system in the past and in the
future—both isomorphic to H—differently, as Pand F.
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plalx) = tr(Mgfo(tr, (T, p T ). 3

alx

Equivalently, this evolution can be represented with a quantum circuit as

Ey

P F
I T D, &b
ajx

There is some arbitrariness in the decomposition of the evolution into a past I, and a future &, which is
similar to the arbitrariness in choosing a time coordinate in relativity. For example, the parts of the evolution
that are at ‘space-like separated locations’ from Alice’s event can be arbitrarily moved to the future or to the past.
Our definition of causal reference frames will deal with this arbitrariness.

Consider now a physical situation comprising of more than one observer-event; for simplicity of
notation we consider only two of them, Alice and Bob, whose respective input and output Hilbert spaces are
assumed to be isomorphic: A; = Ap, By = Bp. Asinsection 2.2, each party has an associated causal
reference frame, with corresponding unitaries Iy, ® and I1g, ®5. We make the assumption of ‘free-
choice’, to guarantee that the choice of operation made by the parties can be treated as an independent
classical variable. Thus we treat the unitary evolutions in the past and future of Alice’s event, I, ® as
functions of Bob’s choice of instrument, and vice-versa. For the time being, we consider only the case where
both parties are performing unitaries on their quantum system, in which case we make the following
definitions.

Definition 1 (Frame functions). A frame function for Alice is a pair of functions (I14, ®,) each sendinglinear
transformations Ty : By — Bg tolinear transformations

IIo(Tp) : P — A; ® Ey, (5

Pu(Tp) : Ao ® Ep — F, (6)
such that I1(Up), ®4(Up) are unitary whenever Uy is unitary.
Itis important to note that we are not requiring that the functions @4, I, belinear in T.

Definition 2 (Causal reference frame). Alice’s causal reference frame is an equivalence class of frame functions.
Two frame functions (IT,, ®,)and (1T, ®,) are equivalent if

D (Up)(Us @ T4 (Up) = @4 (Up)(Up @ TE)IT (Up), @)

for all unitaries Uy : A; — Apand U : Bf — Bo. In the above, I is the identity operator that acts on E,. Bob’s
causal reference frame is defined analogously, with the obvious modifications.

There are in general many frame functions in the equivalence class. For example, given a frame function
(IT4, ®), and an arbitrary unitary V £, we see that &, = &, (I* @ VE)and [T}, = (I* ® (VT)E)II, belong to
the same causal reference frame. We will usually use a single frame function (114, ®,) to define a causal reference
frame, where implicitly we mean that (I, ®,) is one representative of the equivalence class.

When there are more than one party involved in the process, each party will have its associated causal
reference frame. We want to formulate, in the least restrictive way as possible, the requirement that the
causal reference of both parties are describing the same physical process. In every observer’s event causal
reference frame (according to its ‘observer-dependent time function’) there is a time in the distant past
before which none of the parties has acted yet, and a time in the future after which all the parties have
finished acting. We impose a consistency requirement (defined formally in definition 3), to ensure that the
unitary mapping ‘in’ states to ‘out’ states at these distant times is the same for all observers, but we will not
assume a well-defined ordering of the events. The role of this requirement is to enforce that the parties are
describing the same physical situation®. A way to interpret this requirement is that we want the global
evolution from P to Fto be observer independent, but we allow its decomposition into a ‘past’ and a ‘future’
to depend on the observer.

6 . . . . . . .o . . P
Itshould not be interpreted as equivalent to logical consistency, in the same way that a situation in which Alice says ‘hello’ and Bob hears
‘goodbye’ is logically consistent, but relatively uninteresting for physics.
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Definition 3 (Consistent causal reference frames). A pair of causal reference frames (I, ), (II5, ®p) for
Alice and Bob are consistent” if for all unitaries Uy : A, — Agand Ug : B; — Bo,

Dy (Up) (U ® T)TI4(Up) = Pp(Up) (Up @ TF9)TI5(Uy) = G(Uy, Up). )
Equivalently, in circuit notation, the consistency condition means that the frame functions must satisfy
Ey Ep

114 (Up) o U T T oy @b
A[ UA AO B[ UB BO

for all unitaries Uy, Up.

One might prefer the consistency requirement to be formulated purely in terms of device-independent
quantities, such as probabilities for the outcomes of measurements. This can be achieved without changing the
mathematical description, simply by reinterpreting P as the output Hilbert space of a third party, and F as the
input Hilbert space of a fourth party. For the operationally inclined, the quantum evolution G(Uy, Ug) between
Pand Fisjusta concise encoding for the probabilities of measurement outcomes at F, conditional on a state
preparation at P, and on the applied unitaries Uy, Up.

Definition 3 can be easily generalised to N parties A;, A, ... Ay, inwhich case I1 4, will bea function of
Uy - Uay, etc. The consistency condition is then to be imposed between the causal frames of all parties.

Our definitions do not yet specify what happens when the parties perform general quantum instruments. In
order to study phenomena such as the violation of causal inequalities, we need to calculate the outcome
probabilities of general quantum instruments, and in the case the evolution from P to Fwill be a general
quantum channel. Fortunately, we will show in section 3 that formulating our definitions uniquely in terms of
unitaries is not a restriction. Indeed, we will prove that equation (8) for the action of G on unitaries uniquely
specifies a pure process matrix [27], which can then be used to calculate the outcome probabilities for general
quantum instruments. Said differently: if we want to extend G to a linear map on quantum instruments that
agrees with equation (8) for unitaries, there is a unique way to do so.

However, before we turn to proving the equivalence with the process matrix formalism, we give a few
examples of processes that admit a description in terms of consistent causal reference frames.

2.3. Example: causally ordered process

A causally ordered bipartite process is one in which one of the parties cannot signal to the other. A process has
theorder A < B ifno matter his choice of local operation, B cannot signal to A. In general, all pure bipartite
processes with causal order A < B are ‘channels with memory’, of the form [44]

>

Vi V, Vs daop
— -
for some fixed unitaries V;, V, V5. We see directly that the above circuit can be used to represent both Alice’s
causal frame and Bob’s causal frame. Therefore, for causally ordered processes it is possible to find a causal

reference frame in which both A and B are both ‘localised in time’: in the above we have that Bislocalised in the
future of A.

2.4. Example: the quantum switch

An interesting example of a physically relevant process that does not possess a well-defined causal order is the
quantum switch [18, 45]. Nevertheless, we can choose any single observer, and decompose the process into a
past and a future relative to his observer-event. Furthermore, it is possible to describe the past and future
evolutions in a unitary way. The simplest version of the quantum switch is a bipartite process with

dim(P) = dim(F) = 4 and dim(A) = dim(B) = 2. In circuit notation, we can write it according to Alice’s
causal reference frame as

G G U] P

7 One might object to the fact that the consistency condition of equation (8) supposes that the parties are describing the state at Pand Fin the
same basis. We could have also defined the consistency condition ‘up to unitary’: in that case, the consistency condition would be that there
exists constant unitaries U, V such that &, (Up) (Uy ® I")T14(U) = U®(Uy)(Us @ 1™8)T13(Uy) V. However, this change of basis does
not change anything for causality, and can be dealt with separately.
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Figure 2. Graphical representation of the relevant Hilbert spaces from definition 4 of a bipartite process matrix.

while in Bob’s causal reference frame it is

CACACAR az

In the above circuits, the upper qubit is the control-qubit, denoted by C, and the lower qubit is the ‘target’ qubit
which we denote by S. A black circle means control on the state |1)¢, while a white circle is a control on the state
|0)c. It is straightforward to check that both circuits yield the same global evolution G(Uy, Ug) from Pto F. This
example shows that the consistency condition can be satisfied by processes in which one of the parties is
delocalised in time: here we have TT,(Ug) = |0) (0| ® I + |1)(1|° ® U

and &, (Up) = 10)(0lc ® U + [1)(1|¢ @ 5.

A common argument (see the supplementary information of [46]) attempts to conclude that the quantum
switch, as realised in quantum optics experiments is ‘not the real thing’, in that it can be described with a space—
time diagram that involves two space—time points per party, rather than only one. However as discussed in
section 2.1, space—time points do not have an priori physical meaning even in classical physics, and one should
not expect them to fare better once quantum mechanics enters the picture. The time-delocalisation of a local
operation in the quantum switch does not mean that the operation is performed multiple times; it is executed
only once, but on a time-delocalised subsystem, as argued by Oreshkov [36]. Our approach with causal reference
frames provides a means to describe any pure process as the observer-dependent time evolution of a quantum
system; during this evolution the time-localisation of events is generally observer dependent as shown by
equations (11), (12) in the case of the quantum switch.

3. Equivalence with the process matrix formalism

In definition 3, we have proposed a relational definition of ‘processes’ as a set of causal reference frames that obey
a consistency condition. In this section, we make an explicit connection between the already existing process
matrix formalism [17] and the newly developed language of causal reference frames. Namely, we show that pure
processes [27] are in one-to-one correspondence with consistent causal reference frames. This equivalence will
also show that we were justified, in the previous section, in limiting our definitions to the unitary case. The
notation for the process matrix formalism relies heavily on the channel-state duality, or Choi—Jamio kowski (CJ)
isomorphism, which is reviewed in appendix A. In the following, we follow common usage in the literature,
where the terms ‘process’ and ‘process matrix’ are used interchangeably (altough the latter could be seen as the
mathematical representation of the former; this is analogous to the relation between the terms ‘quantum state’
and ‘density matrix’).

3.1. Pure processes

In the original paper by Oreshkov et al [17], a process matrix is defined as a functional on quantum instruments,
obeying the requirement that probabilities are well-defined for all possible operations of the parties, including
operations that involve shared entangled ancillary systems (this last condition ensures that the process matrix is
positive semidefinite). It can be more convenient to view process matrices as ‘supermaps’ [47] that takes the local
quantum channels of the parties and sends them to a quantum channel from a past Hilbert space P to a future
Hilbert space F. General formalisms for higher-order transformations, which include process matrices as special

7
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cases are presented in [48—50], and it would be interesting to investigate whether an analogous theory of causal
reference frames can be developed for these more general frameworks.

For the sake of simplicity, in what follows we consider only two parties, Alice and Bob, as shown in figure 2. The
extension of the definitions to more parties is straightforward, and all the results of this section continue to hold in the
multipartite case. The localised laboratory of Alice has a finite dimensional input Hilbert space A;and output space Ap;
similarly Bob has input B;and output Bo. We further allow the parties to have arbitrary ancillary Hilbert spaces
AI’ R A(’) , B ,/ s Bé, which are directly connected to the future (resp. past), as shown in figure 2. A quantum channel for
Alice is a completely positive and trace-preserving (CPTP) map M: L(A;A]) — L(ApAf), where tensor products
areimplied so that A;A] = A; ® A[.Equivalently, the Choi state of a CPTP map (see the review in appendix A) obeys
MA4I4040 > 0 and try,, 4y M 41414040 = T441, We sometimes use superscripts to indicate the Hilbert spaces on
which an operator acts.

We define process matrices as in [27] 8,

Definition 4 (Process matrix). An operator WFFAi4oBiBo ¢ [ (PFA; Ao B;Bp) is a process matrix if for all CPTP
maps M, : L(A[A]) — L(ApAb), M, : L(B;B}) — L(BoB)), where A/, A}, B/, B, are ancillary Hilbert
spaces of arbitrary dimension, the operator

! ! ! ’
Gry = 114, 08,5,(W Tarromso (M1 44040 @ ppPiPiBoBoy) (13)

is the Choi state of a CPTP map from PA[ B to FA,B),,i.e. trgas 5, Gy = 17451, In the above, W Tasonso is the
partial transpose of W onthe A;, Ao, By, Bp Hilbert spaces, while M, and M, are the Choi operators

corresponding to the CPTP maps M 4414040 and ./\/lfl BiBolBio,

This view of processes as a supermaps M, @ M, — G,, allows one to define pure processes [27], of which we
recall the definition.

Definition 5 (Pure process). A process matrix W PFAidoBiBo js pure if, for all ancillary Hilbert spaces
Af, A}, B], BS’,and all unitaries U: AjA] — ApAp, V: BiBf — BB, the resulting transformation

Guv = tra,a08,8o(W Tosso UN(U| @ [V )V, (14)

is the Choi state of a unitary channel from PA; B] to FA,Bf.

Purifiable processes are processes that can be obtained from some pure process after tracing out certain degrees
of freedom. In contrast to the familiar situations in quantum information, where through the use of an ancillary
Hilbert space any mixed state can be purified and any quantum channel can be dilated to a unitary channel, there
exists processes that cannot be purified [27]. Purifiable processes have been argued to be more reasonable
physically, because the irreversiblity that occurs within them can be interpreted as arising from forgetting degrees of
freedom in a fundamentally reversible process. In this section we obtain another justification for the reasonableness
of pure processes: those are precisely the processes that admit a description in terms of causal frames of reference.

We collect here an important characterisation of pure processes, whose proofis provided in [27].

Theorem 3.1. A process W is pureifand only if W = |U, ) { U,,| for some unitary U,: PAoBo — FA;[B;.

We stress that the above theorem does not mean that all unitaries U: PAgBo — FA; By are such that [U ) (U]
isaprocess.

Theorem 3.1 allows to simplify the expression for Gy in equation (14). Let W = |w) (w|be a pure process,
and define

|G(U, V) )PAIBLFAGB .= |w)Tarsoniso - |U YArAiAoAo| 7 Y)BiBiBoBo (15)
where |w)Tuomso: AfAgBiBo — PF is the matrix obtained by partial transpose of |w). Then we have that
Guv = |G(U, V)G, V). (16)

We make a few comment about the dimensions of the Hilbert space. We first observe that no loss of
generality occurs by restricting our attention to pure processes in which ds, = d,, dp, = dp,anddp = dp.
Indeed, suppose W PFAiAoBiBo is pure a process for which the input-output dimensions do not match. We can
justadd new Hilbert spaces A/, A}, B/, B} to make the dimension match. We define

8 . . . L . . . .
However, our notation differs in that we use A; for Alice’s input Hilbert space, while [27] uses A; for the space of matrices acting on the
input Hilbert space.

? The dimensions of the primed Hilbert spaces mustsatisfy dy,d oy = daod ., dpdy = dpody),and dpd ydy = dpd , dp: .




10P Publishing

NewJ. Phys. 20 (2018) 103031 P A Guérin and C Brukner

W = wPobBo @ NI @ [IHI™ @ INCIAO" @ [T, (17)
where Py > A/, Pz = B/, Fy = A}, Fg = B),. The new process W is pure and acts on the Hilbert spaces
P = PP, Py, F = FE,Fy, A; = AjA], Ao = ApA}, B; = BB/, Bo = BpB),,where now the input and output
Hilbert spaces have the same dimension. We can recover W from W by tracing out over the primed Hilbert

spaces. A second observations is that lemma B.2 from the appendix implies that the dimensions d4 := d, = dj4,
and dg := dp, = dp, mustbe divisors of dp = dpin order for a process to be pure.

Definition 6 (The induced map of a pure process). Let W be a pure process with d 5, = d4,,
dp, = dp,, dp = dp. Theinduced map G is the bilinear map that sends pairs of unitaries U: A; — Ap to
V: B — Bptoaunitary G(U, V): P — F,defined by

(U, VINFF = ) Tasomso - [U) o] v yBibe, ()

Processes where parties have the same input and output Hilbert space dimension are fully determined by their
action on unitaries:

Proposition 3.2. Let W = |w) (w| be a pure bipartite process with d o, = d 4, =: ds, dp, = dp, =: dp, dp = dp,
and let G beitis induced map as in definition 6. Let { U,};é b Vj};i;: | be orthonormal bases of unitaries (see
appendix A) for Alice’s and Bob’s Hilbert space, respectively. Then

1
" dady

w)

SOIG(Us V)YFIUT ARV it (19
ij
Proof. Since |w) is a pure state, and that |U}")) ® |V;-‘ ) formsabasisfor A; ® Ap ® B; ® Bo, |w)canbe
expanded as
lw) = > I IUF Ao v Piso, (20)
ij
where [¢); ;) are vectors that we must determine. Equation (15) together with equation (A4) yields

IG(Ui, VNPT = |w)Tannonmo|U; YAr4o| V; BP0 = dy dplap ;)™ . e2y)

Theorem 3.3. Every pair of compatible causal reference frame as in definition 3,
G(Uyp, Up) = D4 (Up)(Uy @ IE)II4(Up) = Pp(Up)(Up @ 10 I15(Uy), defines avalid pure process

1
dydg

lw) Y 1G(UL, V) WPEIUF Ao v )Bibo, (22)

1,j

2
dy
i=

2
where {U: A; — Ao}t and {V;: By — BO}?QI are a basis of orthonormal unitaries.

Proof. Let |w) beasabove, let A] =~ A/}, B/ = B/, be ancillary Hilbert spaces of any dimension, and let
M: AjA] — ApAland N: B;B] — BoB/ be unitaries. These can be expanded in a basis as

M = Z (]1 ® aij, (23)
i
i
2 2
where {U;: A; — Ao }fgl and {V;: B; — Bo}‘;f’:l are a basis of orthonormal unitaries,and a; : A] — A},
b; : B[ — B/,arelinear maps, not necessarily unitary. The transformation induced by M, N is
KM, N)»PA,’B,’FA(’)B[) = |W>TAIAO,,,,,O |M>>A1A,/AOA(’)|N>>BzB,’BoBé) (25)

= 2IG(U, V)Y Flaipitolp; yrire, (26)
ij
and showing that the process is valid and pure is equivalent to showing that
KM, N) =5 G(U, V) ® a; ® bj, (27)

i,]

isa unitary from PA/B; to FA,B/.
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We first write G(U;, V;) in Alice’s causal reference frame
KM, N) = (21(V)(U; @ I, (V) @ a; @ bj, (28)
ij

=> (V) ® by, (29)
;
where P = A ® E,,and in thelastline we defined f,, (V) : PA] — FA/,as
fu(V) =S (@(V)(U; @ TIL(V) ® a; = (24(V) @ [40) S U; @ I @ a; ([Iu(V) @ I, (30)

The second equality above, together with equation (23) makes it clear that f(V') is unitary whenever Vis unitary,
because it is a product of three unitaries. Notice also that f(V') is alinear function both in Mandin V, soitis
continuous in those two variables. Linearity in V'is proven by switching to Bob’s causal frame:

fu (V) = Z(q)B(Ui)(V ® ' IIp(U)) ® a;. (31

Therefore fy(V') satisfies the conditions of Marcus’ theorem B.5 from appendix B, and we conclude that
either

fu (V) = Su(V ® IE41) Ty, (32)

or  fi, (V) = Sy (VT @ TEsAN) Ty, (33)

for some unitaries Ty, : PA] — A;A{Eyand Sy : AgA[Ey — FA/, that depend on M. Equivalently, there exists a
unitary Uy € L(PA]FA(), such that

| fue (VINPAREAD = Uy (IV @ INFF @ |I)Ai4o). (34)

Indeed, if equation (32) holds, then Uy, = SAF/IA‘I’ ® (TL)PAr, while if equation (33) holds, then Uy, = §1€IAO®
(T)PA - SWAPpp. Here we have defined §y, € £(FAJ) from Sy, by using a basis-dependent isomorphism
between Ap A/ Ey and FA/), and similarly for Ty, € L(PA)).

We now show that the fact that fis a continuous map from M to functions V' f,, (V') implies that
equation (32) holds for all M. Indeed, taking M to be the identity map
TA—40 @ TA—40; i) Y4 — |i)40|j)40,we get from equation (31) that

fr(V) = (@p(D)(V @ IE)TIH(T)) @ TA~40, (35)

which shows that f; takes the form of equation (32), without a transpose. Letting now M be an arbitrary unitary, we
can take a continuous path yfrom - (0) = Z to y(1) = M in the space of unitaries. By continuity, equation (34)
will give us a continuous path ~/ of unitaries in £(PA] FA}), startingat 4/(0) = ®5(Z)F @ (IIz(Z)7)? @ T44
and endingat v/(1) = U),. Let Hbe the subgroup of unitaries of the form UIFA<I’ ® Uy A ,let K = {I, SWAP}, and
let G = H - K bethe product of those two subgroups. Ateach point ¢ € [0, 1] of the path, the unitary v/(¢) has to
be in G. The identity component of G is H and continuous paths in G must remain in the same connected
component'’; since 4/(0) € H,itmustbethat v/(1) = Uy € H.Therefore we have that (V') obeys

equation (32) for all M.
Thus we have
KM, N) = 3 (Su(V; ® 1B Ty) @ by, (36)
j
= (Su ®1%) 3V @ 1% @ by (Ty © I%), (37)
j
and equation (24) shows that (M, N) is unitary, since it is the product of three unitaries. +

The proof above can be generalised recursively to any number of parties, as we sketch here. Assume that
every N — 1 partite compatible causal reference frames defines a valid pure process and let G(U;, ..., Uy) be
compatible reference frames for N parties. Then we have to show that (M, ..., My) defined as the obvious
generalisation of equation (27) is unitary, where as before, M; = >, UF @ ak,fori € {1, ...N}. Defining

10 One way to see that Hand H - SWAP are not connected is to use the continous map ¢ : G — R, definedby ¢(U) = det
(trp,p,| U Y UIPFIAIAOP2F2AI"A0™) This map evaluates to 0in H,and to 1in H - SWAP.

10
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Tttty (U = >0 QU ., UL, Uy) @ 0)'® ... @afy-), (38)

iy s N1

we get

KM, ooy M) = Tty (UR) @ af. (39)
k

Now by the recursion assumption, Jy, ..., m,_,(Uy) is unitary, and it is linear in Uy as can be seen by using Ay s
causal reference frame decomposition for G in the equation (38). Therefore (using as before the generalisation of
Marcus’ theorem and a continuity argument to get rid of the transpose), there exists unitaries

SMmy....My_p Im,... .My, Wwhichdependon M, .... My_;,and such that

Iy My (Un) = Sm,,.. vy (Un @ DT, My e (40)

Plugging this into equation (39) shows that JC(M,, ..., My) is unitary, which completes the proof by recursion.
We now provide an expression for pure processes that makes manifest the existence of the causal reference
frame decomposition for one of the parties.

Theorem 3.4. The process vector |w) corresponding to a pair of consistent causal reference frames as in definition 3,
G(Uy, Up) = O (Up)(Uy ® TE)II4(Up) = Pp(Uy)(Up ® 1) IIz(Uy) can be written such that the causal frame of
one party (in the following, Alice’s) appears explicitly as

w) = di«m“oZ|HA<vj>>>P’A'E'|¢>A<vj>>>AoEo’F|v;-*>>BIBO, (41)
B j

2
where Ej, Eq are Hilbert spaces isomorphic to Ey, and where { Vi: By — Bo}?f’: L is a basis of orthonormal unitaries.

Proof. From theorem 3.3, we may write

W) = = SIG(U VYUY ol oo )
AVB ij
= —— Yl V)(U; @ DI U elv )it 43)
A UB

i,]

We prove the statement by ‘expanding’ |w) in the {|U;* ))440} basis:

1
(Utiolw) = T DoIR(V)(U; @ DT, (V)) Y[V HBiBo (44)
B
= (Ui @ (IfiFe) di DoI@a(V)YAoFoF Iy (V) Y PAEIV BB (45)
B j
where in the second line we used proposition A.1, and where E;, Eg are two isomorphic copies of E4. +

This theorem can also be straightforwardly generalised to any number of parties.
Finally, we prove the converse of theorem 3.3, thus showing that pure processes are equivalent to causal
frames of reference.

Theorem 3.5. If W is a pure process with matching input and output dimensions d,, = d s, dp, = dp,, dp = d,
then its induced map G admits a decomposition into causal frames as in definition 3.

Proof. Make all parties except one of them (here we take Alice w.l.0.g.) perform a fixed unitary; in the bipartite
case there is only Bob performing the fixed unitary U, but the argument applies for any number of parties. Then
G(-,Up) defines a linear function that maps the unitaries of Alice to unitaries from P to F. Using theorem B.5 on
the map Uy — G(Uy, Up) gives us that either

G(Uy, Up) = P4 (Up)(Ux ® IF)II,(Up) (46)
or  G(Us, Up) = &4 (Up)(Uy @ 1)1, (Up), (47)

where @, (Up), I14(Up) are unitaries that depend on Up. We show by way of contradiction that equation (47) is
not possible because the process would not send arbitrary CPTP maps to CPTP maps. Following the same steps
asin the proof of theorem 3.4, and recalling that |UT ) 440 = SWAP, 4 |U )40, we find that if equation (47)
holds, then |w) has the form

11
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Iw) = di«mE'EOSWAPA,AO S 13 (V) WAOEOF [TT (V) YPAE V5 rbo, (48)
B j

Therefore, if It ® [1)) ()40 is Alice’s choice of instrument, while Bob performs the unitary U, then the
resultingmap G € L(PF), calculated according to equation (13), is

G = tra,a08,,(Iw) (w|Ta0ms0 - (14 @ [4) (Y]40) @ |Up ) Ul®1P0) (49)
= tra,a,(Jw(Up)) (w(Up)| - (T4 @ [¢*) (¢ [A0)), (50)
where we defined
|w (Up))PAiAoF .= dL«ME’EOSWAPA,Ao@A(UB)>>AOEO’F|HA(UB)»P’A1E1- (5D
i

In order for the process to be valid, it must be the case that trzG = I”. Let us define
G = trga, ([ @ [*) (PF |40 - [w') (w']), where

W) = di«m“oSWAPAIAom»AoEo’F|JI>>P’A'E' (52)
'B

- di«mwoSWAPA,Aom»AoFA|H>>EoFE|H>>PAAI|H»PEEf (53)
'B

— I AE TP TYPEE, (54)

and where we decomposed P = P4y ® Pg, F = F4; ® Fy. We can see that |w (Up)) and |w') are related by the
application oflocal unitaries on P and F. These do not change the Schmidt coefficients, and it implies that trz G
has the same spectrum as trz G’. But

trg G' = trea,ao([0%) (W Ao - [w/) (W']) = [ ) (& [P+ @ T, (55)
so trzG has some of its eigenvalues equal to zero. Thus we reach a contradiction with the assumption that
trzG = I, and we conclude that equation (46) must hold. We can repeat the argument for all parties. +

4. The causal reference frames of causal inequality violating processes

In this section we investigate the causal reference frames description of some processes that can violate causal
inequalities. An interesting pure tripartite process which is known to violate causal inequalities was already
studied in [26—-28]. Written as a process vector, it is equal to

lw) =D IVPIXCly & f () 1%F, (56)
Xy

where I = A;B;C;, O = ApBpCo, where we use bold-face notation for three-component binary vectors and
where

f(a, b, c) =(0,0,0) + (1,0, 0)8,00,1 + (0, 1, 08,100 + (0, 0, 1)8,,0p1- (57)
Alternatively, we can describe |w) via it is induced map G(Uy, Up, Uc)

G(Uy, Up, Uo)liii) = (Ux ® Up @ Ug)liii) (58)

G(Us, U, Uo)(Un XU} @ T @ 1)]i01) = (Uy ® Up ® Ug)i01) (59)

G(Uy, Up, U (I © UpXUJ ® D1i0) = (Up ® Ug @ Ug)|1i0) (60)

G(Us, Up, U)(I @ T ®@ UcXUD|01i) = (Uy @ Up @ Ug)|01i), (61)

wherei € {0, 1}. When described from Alice’s event-frame, it is

U |

&2b

Here X is the Pauli-X operator, and a white circle is a control by the |0) state. This process has the curious feature
that the past I, is linear in Uz and Ug, but the future ®, still depends non-trivially on Uy, Uc. Interestingly, this
process violates causal inequalities even under the restriction to classical instruments (diagonal in the
computational basis) [28].

We can obtain another valid process by taking the time reverse of |w), as explained in appendix C. The
result is

12
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lwe) =S IOFlY & £ (0)°1x)!|y)F (63)
9%

= IXPIYCIXY @ f(0)F (64)
X)y

=Y INPIXCIy) Ix & f(y)F, (65)
9%

where in the second line we made the change Y — Yy @ f (X) and in the third line we relabelled x < .
Equivalently, this process can be described with its induced map as

G(Uy, Up, Up)liii) = (Uy @ Up ® Up)liii), (66)
G(Uy, Up, Up)]i01) = (XUy ® Up ® Ug)|i01), (67)
G(Uy, Up, Up)|1i0) = (Uy ® XU ® Uc)|1i0), (68)
G (Us, Up, Ug)|01i) = (Ux ®@ U ® XUc)|01i), (69)

where i € {0, 1}. At first sight it seems that the transformation G, can be understood causally: the parties
parallely apply Uy, Uy, Ug on the input quantum state |t/)*, and then a Pauli-X gate is applied to the state in a
way that depends on the state in the past |¢)). Indeed, in classical theory, this process has a simple realisation: first
copy the input state, then parallely apply the transformations Uy ® Uz ® U on the original state, and finally
apply a controlled gate from the copy to the target. Of course, this particular strategy is forbidden in quantum
mechanics because of the no-cloning theorem.

The causal reference frames description of |w;) however tells a different story. When written in Alice’s causal
reference frame, the process is

orob

which has the same feature that was previously noticed for |w) (now it is the future @, thatislinear in Uy, U,
while IT4 has non-trivial dependence on Ugand Uy).

For completeness we note that the process |w;) can also be written as a circuit containing linear post-selected
closed timelike curves (CTCs) [26]

Ua
Us &1p
Uc

In the above circuit, each loop can be (probabilistically) implemented by, on the left hand side of the loop,
preparing a maximally entangled state |$1) = >° |i) |i), and on the right hand side, performing a Bell
measurement and post-selecting on the outcome |®"). We refer the reader to [26] for a more complete

discussion.
We now turn to the question of whether |w;) can be used to violate causal inequalities. If the input state in the
pastis
[9)" =3~ dulu), (72)
u
then we define the reduced tripartite process matrix Wy, € L(I ® O) by
Wi = trp(1) (O - i) (wil) = 3 5bulu) (V! @ [x + F W) (x + FOI°. 73)
u,v,X

A simple choice of input state is the uniform superposition [¢))? = %ZJU)’ which yields

W= < I @ Ix+ F) (x+ P, (74)

u,v, X

13
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We finish with some comments about the possible relationships of our work with other approaches. There
are superficial similarities between our framework and the framework of relative-locality [55], in which a non-
trivial geometry of momentum space leads to the observer-dependent locality of events. The ideas of relative
locality have also been studied in the quantum regime [56]. It is currently unknown whether relative-locality
allows for the violation of causal inequalities or the realisation of causally non-separable processes. Another
interesting recent development is Hardy’s operational reformulation of general relativity [13], and it is an open
question whether our treatment of events in quantum causal structures can be reframed in his (potentially more
general) formalism.
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Appendix A. CJ isomorphism

Let A;, Ao be Hilbert spaces of finite dimension d 4, and d 4, respectively, and let {)* }?2’0_ 'y | 7)Ao }?2%71 bea

choice of bases for A;and Ap. We denote by L(A;), L(Ap) the vector space of linear operators acting on Ay, Aop.
We follow [27, 26] in defining the CJ isomorphism. We warn the reader that there exist different conventions
in the literature. For any linear transformation K: A; — Ag, we define the ‘double-ket’

Yo = STl @ (Kli)ye. (AD

Let K, M: A; — Ap. Then the inner product of [K)) and |M)) in A;Ag is equal to the Hilbert—Schmidt inner
product of the operators K, M:

(MIN )40 = tr(MTK). (A2)

Ifds, = da, =t ds, wewillsay thataset of unitaries {U; : Ay — Ao }£1 is an orthonormal basis if {|U; )) }?i1 isa
basis for A; ® Apandif {U|U;) = da ;.
We will often make use of the two easily verified identities

[KyAe =3 S (KIiDA @ fiYto, (A3)

IK)" = (K*|, (A4)

where KT: Ap — Ay is the transpose of K, defined by (i| K| j)40 = (j|4oK]i)4,and K* : A; — Ap is the
complex conjugate { j|4o K*|i)4 = ((j|4e K[} .

We also note that for any vector |v)44¢, the isomorphism can be inverted to get the matrix K, for which
IK,)) = |v). The explicit inversion formula is

K, = |v)Tu, (A5)
where T, is the partial transpose on the A; Hilbert space, whose definition in the computational basis is
(i)l jyto)Tn = |yt (il (A6)
We can straightforwardly extend the ‘pure’ definition of the Choi isomorphism to get a ‘mixed’ version. Let
M: L(A]) — L(Ap)bealinear map. Itis Choi operator is defined as
Mo =37 (i1 @ M) ()", (A7)

7]

which is a positive operator if and only if M is completely-positive (CP) [57]. One may check that the
isomorphism can be inverted by using the formula

M(p) = tra,(MA4o . pTa @ T40), (A8)

The above equation can be used to show that M is trace-preserving iff tr, M 440 = T4,

18
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We also collect here the following identity, allowing to express the product of matrices in the Choi
representation.

Proposition A.1. Let P, A;, Ao, F beisomorphic finite dimensional Hilbert spaces, andlet Vi : P — Aj, V5 :
A; — Ao, V3: Ag — F belinear maps. Then

[VaVaVIOPE = (V3440 | )PAr v Ao, (A9)
Proof.
(VIR VNPV WAF = ST (KA @ ((KIVE)A0) - (V)P @ 1) @ liY4e @ (Vili)F) (A10)
ijk
=SV - (NP (lDTF (A11)
ij
=S"(VIiNP @ (Vali) (il Vil j))F (A12)
-
=S"(V1iN)P @ (V3 Vil j)F (A13)
j
=> 1) @ BVUIINE = W) (Al4)
j
+

Appendix B. Generalisation of Marcus’ theorem

In this section we recall Marcus’ theorem [58], and give it a slight generalisation. Let H;, H, be Hilbert spaces,
andlet f: L(H;) — L(H,) be amap. We say that fis unitarity preserving if f (U) is unitary for all unitaries
U € L(Hy). In what follows Hilbert spaces are always finite-dimensional.

Theorem B.1 (Marcus [58)). Let H be a finite-dimensional Hilbert space, and let f : L(H) — L(H) be a unitarity
preserving linear map. Then either

f(U) = AUB (B1)
orf(U) = AU'B, (B2)

where A, B are constant unitary matrices, and where T is the transpose in the computational basis.

In virtue of the Choi isomorphism, this theorem is equivalent to the fact that the only channels on a system of
two qudits that preserve the set of maximally entangled states are products of local unitaries and swap [59, 60].

In what follows, we will prove an analogous theorem B.5 for the case when f sends d X d matricesto d’ x d’
matrices, with d’ an integer multiple of d.

We assume for the moment that f(U) is unitary for all unitaries U, and that f (I) = I. There is no loss of
generality by assuming the second property, because if fonly satisfies the first property, then f/(U) = f (I)'f (U)
satisfies both.

Lemma B.2. Let H;, H, be Hilbert spaces with dimensions dy and d, respectively. Let f : L(H)) — L(H,) bea
unitarity preserving linear map such that f () = L. Then % must be an integer, and if | 1)) (¢, |p) (¢| € L(Hy) are

two orthogonal projectors onto pure states, then f (|1) (|) and f (|p) (@) are two orthogonal rank % projectors.

Proof. Assume without loss of generality that f (I;) = L. Let P € L(H;) be a projector, and define
Up =1, — 2P. (B3)

This is a hermitian unitary, therefore, % (I + iUp) is unitary. The unitarity preserving property of f, together
with linearity, implies that

%(f(]h) + if (Up) (f (M) — if (Up)') = T, (B4)
f(Up) = f(Up)', (B5)
fWUp)f (Up) =L, (B6)
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f) — 4f P) + 4f (P)* = L, (B7)
fPy? =f(), (B8)

sothat f (P)isaprojector.
Now forany|¢)) € H;, we write the corresponding projector as P, := f (|¢) (¢]). Thenssince f (I}) = I, we
have that

By f (@ = I) (¥ = 0. (B9)

For any state |¢) € H, orthogonal to |1/), we can decompose I} — [¢) (| asasum of (d; — 1) orthogonal rank
one projectors containing |¢) (@|. From equation (B9) we then get that P, P, = 0 whenever (¢|y)) = 0.
Let|0), [1) € H; beany two orthogonal states, with corresponding projectors Py, P; € L(H,). Define

|+) = %(|0> =+ |1)),aswell as

Z =10)(0] — [1)(1], (B10)
X=[+){+ = 1=) (=1 (B11)
P=f0)—P,— P, (B12)
P = f(£) (£D. (B13)

Then, V := %(X + Z) + (I — 10)(0] — [1)(1]) is a unitary and for fto be unitary preserving we must have
2

L = f(V)f (V) = %(Po —P+P —P)+E (B14)

L= %(Po P+ %(a +P) + B+ (P — PY(P. — P) + (. — P)(Py — P (B15)
= (Po— P — P)=—(P, — P)(Py— P (B16)

= (Po— P) =—(P. — P)(Po — P)(Pr — P), (B17)

where in the last equation we multiplied both sides to the right with (P, — P.).
Taking the trace on both sides gives

tr(Py — P)) = —tr((P- + P)(Po — P)) = —tr(Po — Py, (B18)
trPO = trPl. (B19)

This means that the P, all have the same trace irrespective of the state |¢)). Finally, decomposing I into any
orthonormal basis containing yields

ditr(By) = tr(f () = dy, (B20)
so we finally reach our conclusion that for all |¢)),
tr(Py) = é (B21)
dy
Since P, is a projector, Z—j must be an integer. +

The above shows that the dimension d, needs to be an integer multiple of d;. In all that follows, we take this
into account by explicitly by introducing H, and Hg, Hilbert spaces of dimension dy, dg, with preferred
bases {|a) } 315", {le)} ¢

Lemma B.3. Let {Pa}f:f‘:1 be orthogonal rank d, projectors actingon L(Ha ® Hg), such that 3", B, = TAE Then there
exists a unitary V such that VB,V = |a) (a|* @ TE.

Proof. Decompose each projector into B, = % ![v¢) (v¢| where all the |v¥) are orthonormal. Defining
V=13, la)*|e)f (v;|,wehave VE VT = |a) (a|* @ IF. +

LemmaB.4. Let f : L(Ha) — L(Ha ® Hg) be alinear unitarity preserving map, such that
f(a){al) = |a)(al* @ IE. Then f(U) = g(U)A ® I for some linear unitarity-preserving
map g : L(Hy) — L(Hy).

1

Proof. We need to check what happens to the non-diagonal elements f (|a) (b]). Define |+) = —2(|a) + |b)),

and note that |+) (+|, |=) (=, |7) {jl for j = a, b are a complete set of orthogonal projectors. Therefore f
maps them to orthonormal projectors according to lemma B.2.

20



10P Publishing

NewJ. Phys. 20 (2018) 103031 P A Guérin and C Brukner

This means thatif j = a, b, then f (|7) (jf (|+) (4+]) = 0. This implies that
((la) {al + 1b) (BD* @ IDf (|£) () = £ () (. (B22)
Repeating the same argument for | +;) = %(M} + i|b)) also implies that
((la)(al + 1) (BD* @ INF(I£:) (D) = FUE:) (FiD- (B23)

Therefore, since {|a) (al, |b) (b|, |£) (£|, |&;) (£;|} spans the subspace {|a) (a|, |a) (b|, |b){al, |b) (b]}, we get
that

f(a)(bl) = (ala) (al + Bla) (bl + b) (al + 6]b) (b)* @ TF, (B24)

forsome v, 3, 7y, 6 € C.Thus fhasthe form f(U) = g(U)* ® I£, and the unitarity-preserving property of f
implies that gis unitarity preserving. +

Theorem B.5 (generalised Marcus’ theorem). Let f: L(H,) — L(Ha ® Hg) be a linear unitarity preserving
map. Then either

fU)=AU* @ IF)B (B25)
or f(U) = A(UMN" ® I")B, (B26)
for some fixed unitaries A, B € L(Ha ® Hg), and where T denotes the transpose in the computational basis.

Proof. Define f,(U) = f (I)'f (U). Then f,(D = L, soaccording to lemma B.3, there exists a unitary V, such that
Vf(la)(al) VT = |a) (a| @ L (B27)

Then, from lemma B.4 we get that f,(U) := Vf(U) VTis of the form

LWU) =g @ IF, (B28)
where gis a unitarity preserving linear map for which the original Marcus theorem B.1 applies, i.e.
g(U) = CUD (B29)
org(U) = CU'D, (B30)
for some fixed unitaries C, D. Then
fU) =fMAW) =fOVHUV =DV @ TV, (B31)
shows that we have the desired form, with A = f(DVH(C ® I)and B = (D @ I) V. +

Appendix C. The time reversal of a pure process

Let |w) be a pure process vector whose parties have equal input and output Hilbert space dimensions. Taking the
complex conjugate and swapping inputs and outputs yield a valid process

|wy)PAiAoBiBol = (SWAPpr ® SWAP a0, @ SWAPg o) [w*)PioBiBor, (@)

which we call the time-reversal of [w). We now show that |w;) is a valid process.
1

) = oy ST VI Y €2
-1 SI0CU, YN e ©
= SIGL, VYUY eIy (h
_ dAldB SIG,(U, V) YPFIUZ Yo V% Bibo, (C5)

i,j
where in the third line we made a basis change U; — U;, Vi — V]-T . The last equation shows that the reversed
process is equivalently defined by the map

G(U, V) := G(UT, VY. (Co6)
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The map G, admits a decomposition into causal frames:
G(Un, Up) = (2(UR(U} @ IE)IL (U (C7)

=LA (Up) (Up @ IE) @ (U)'. (C8)

The above equation shows that Alice’s causal reference frame is given by
" (Up) = T (UH, I, (Ug) = &4 (U}, and similarly for Bob. Theorem 3.3 then implies that |w;) is a valid
pure process.
As asimple example, and as justification for calling this operation ‘time-reversal’, consider the single partite
process G(U) = AUB, where A, B are fixed unitaries. Then it is time-reverse is G(U) = BTUA'.
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