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Abstract
In general relativity, the causal structurebetween events is dynamical, but it is definite andobserver-
independent; events arepoint-like and themembershipof an eventA in the futureorpast light-coneof an
eventB is anobserver-independent statement.Whenevents aredefinedwith respect toquantumsystems
however, nothingguarantees that the causal relationshipbetweenA andB is definite.Wepropose to
associate a causal reference frame corresponding to eachevent,whichcanbe interpretedas anobserver-
dependent timeaccording towhich anobserverdescribes the evolutionofquantumsystems. In the causal
reference frameofone event, this particular event is always localised, butother events canbe ‘smearedout’ in
the future and in thepast.Wedonot impose apredefinedcausal order between the events, butonly require
that descriptions fromdifferent reference framesobey a global consistency condition.We show thatournew
formalism is equivalent to thepureprocessmatrix formalism (Araújo et al2017Quantum110). The latter is
known topredict certainmultipartite correlations,which are incompatiblewith the assumptionof a causal
orderingof the events—these correlations violate causal inequalities.We showhowthe causal reference
framedescription canbeused to gain insight into thequestionof realisability of such stronglynon-causal
processes in laboratory experiments.As another application,weuse causal reference frames to revisit a
thought experimentZych et al (arXiv:1708.00248)where the gravitational timedilationdue to amassive
object in aquantumsuperpositionofpositions leads to a superpositionof the causal orderingof twoevents.

1. Introduction

The usual formalismof quantummechanics explicitly depends on a background space–time; this is indeed one
of themajor conceptual obstacles to a quantum theory of gravity [1–4]. In quantum field theory, wemustfirst
specify a space–timewith a fixedmetric, beforewe can define quantumfields as operator-valued distributions
on this space–time.Matter is described by quantummechanics, and it is allowed to be in a quantum
superposition of two positions. But since Einstein’s equations relates themass-energy distribution to themetric,
we expect something like a ‘quantum superposition of spacetimemetrics’ to accompany the superposition of
position of thematter [5]. As remarked byButterfield and Isham, once we embark on constructing a quantum
theory of gravity, we expect some sort of quantum fluctuations in themetric, and so also in the causal structure. But in
that case, how are we to formulate a quantum theory with a fluctuating causal structure [6]?

Regardless of the specific details of anunderlying theory of quantumgravity, the superpositionprinciplemakes it
reasonable to expect that in some low-energy limit (whoseprecise nature couldonlybe rigorously established froma
complete theory)quantumsuperpositions of classical solutions toEinstein’s equations canoccur. In the recentwork
byZych et al [7], it is argued that aquantumsuperpositionofmatter could lead to thequantumsuperpositionof the
causal orders of two events [8], due to gravitational time-dilation.Their descriptionof the situationproceeds from the
point of viewof a far-awayobserverwho is not affected by the gravitationalfield.Onemight questionwhether such an
outside description is necessary, and askwhether indefinitely-causal processes admit a relationaldescription [9], from
thepoint of viewof the local observers.
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In general relativity, events are definedwith respect to localised physical systems (for example, the
intersection of theworld-lines of two particles is an event), and causality is a relationship between events. A
classical event is ‘point-like’: mathematically it is represented by an equivalence class, with respect to the
diffeomorphism group, of points on the space–timemanifold. Can a similar definition of events be provided for
quantum systems, and if so, will the point-like nature of events persist?

In this workwe provide an operational definition of events for quantum systems, and study causality as the
relationship between such events.We formalise this in section 2, wherewe associate an observer to each event,
and postulate a corresponding causal reference frame, whichmay be interpreted as an observer-dependent time
that the observer uses to parametrise the evolution of quantum systems.We do not preimpose awell-defined
global ordering of the events; we tolerate that according to one event’s causal reference frame, the other events
might not necessarily be localised in the future or in the past. Instead, we require a weaker consistency condition:
all observers should agree about the evolution connecting the state in the distant past to the state in the distant
future. Thus, the observer-independent localisation of events in general relativity—the fact that events can be
modelled as points on a space–timemanifold that is common to all observers— is weakened, but the consistency
condition guarantees that the global causal structure (mathematically, the corresponding processmatrix) is still
observer-independent.

There is a concrete need to understand how the usual ideas of causality (which depend on afixed classical
metric) aremodified by quantummechanics; formalisms thatmay help address this question have been
proposed byHardy [10–13] andOeckl [14–16]. The processmatrix formalism [17] is closely related to the above
approaches, and alsomakes it possible to studymultipartite quantum correlationswithout the assumption of a
definite causal order between the parties. The quantum switch [18] is an example of a non-causal process that
has been implemented in the laboratory [19, 20]. Other processes can violate device-independent causal
inequalities; unfortunately these processes are so far lacking a physical interpretation. Non-causal processes
offer interesting advantages for information processing [8, 21–26], so it is important to understandwhich of
them could in principle be implemented in the laboratory. Recently, Araújo et al [27]have defined pure
processes (that can be understood as unitary supermaps) and proposed a purification postulate, which rules out
processes that do not admit a purification.One of theirmotivations for imposing this requirement is that only
purifiable processes are compatible with the cherished reversibility of the fundamental laws of physics, in that
they do not cause ‘information paradoxes’. Nonetheless, some pure processes are known to violate causal
inequalities, showing that purifiability alone is not enough to single out the processes with a knownphysical
implementation.

In section 3, we show that there is a one-to-one correspondence between pure processmatrices and our new
description of quantum causal structures in terms of causal reference frames. This equivalence yields a different
physical justification for the purification postulate of [27]: pure processes are those that allow an (observer-
dependent) description in terms of a quantum system evolving in time.We showhowknown examples of
processes can be understood in terms of causal reference frames. Causally ordered processes are those forwhich
the locality of events is observer independent: in the causal reference frame of any event, all other events are
localised either in the past or in the future. Amore interesting example is the quantum switch, where according
to eventA’s causal reference frame, eventB is in a controlled superposition of being in the future or in the past
(and vice-versa). In section 4, we study a new example of a causal inequality violating pure tripartite process,
obtained by taking the time-reverse of a known non-causal classical process [27, 28].We point out some curious
features in the causal frame description of this process, whichmay explain why such processes do not have a
known realisation in the laboratory.

Finally, in section 6, we revisit the thought experiment of the gravitational quantum switch, and showhow
causal reference frames can be applied in that context.We showhow a judicious change of coordinates can be
used to bring two different classical spacetimes into a form that corresponds to the causal reference frame of a
particular event.We then invoke the superposition principle and obtain a representation of the gravitational
quantum switch, in the causal reference frame of that event.

The consequences of the fact that quantummechanical events do not occur at awell-defined instant in time
has been studied bymany authors, including among others [29–34], and the lack of a ‘common time reference’
shared between the parties in the quantum switchwas noted in [35].Motivated by the question of whether
experimental implementations of the quantum switch can be considered to be genuine, Oreshkov recently
argued that in bipartite pure processes, the parties can be said to act on ‘time-delocalised subsystems’ [36]. Our
approach is complementary and seeks to describe the time evolution of a quantum system according to a
reference frame associated to one of the parties. In section 5we comment on themathematical link between the
two approaches, and answer in the affirmative to a question that was raised in [36] concerning the existence of a
specific representation for all puremultipartite processes.
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2.Quantum theory in the frame of a localised observer

2.1. Events and causality
According toWald’s influential textbook on general relativity [37],we can consider space and time (≡space–time)
to be a continuum composed of events, where each event can be thought of as a point of space at an instant of time.The
diffeomorphism invariance of general relativity brings difficulties to the view that points in the space–time
manifold have a physicalmeaning, via the famous hole argument. If onewants to give physicalmeaning to the
points in the space–timemanifold, then onemust conclude that the dynamics of general relativity is
underdetermined: a set of initial conditions for the gravity andmatterfields (for example on a space-like
hypersurface) does not uniquely determine the values for the fields at other points of space–time, due to the
gauge-symmetry corresponding to diffeomorphism invariance.We refer the reader to the reviews [38, 39] and
references therein for a detailed treatment of the hole arguments and its implications.

Instead, events can bemeaningfully definedwith respect to physical systems. For example, itmight be
possible to identify an event unambiguously via statements such as ‘the place in space–timewhere a particular
clock reads 10 o’clock’, or ‘the place in space–timewhere these two billiard balls collidewith each other’.More
generally, some authors (going all theway back to Einstein) have defined events operationally and in a
diffeomorphism-invariantmanner via the coincidences offields orworldlines: an incomplete selection of such
approaches is [13, 40–42]. After the physical identification of an event ismade, the locality of an event—its
point-like nature—is observer independent: spatiotemporally distant observers will also agree that the event
happened at a some space–time point.

Once a set events has been identifiedwith respect to physical systems, we can start asking about the causal
ordering between those events. This is done by postulating observers at these events thatmay (ormay not) signal
to each other bymanipulating physical systems. The inclusion of observers (and the ‘free choice’ assumption for
some of their actions) allows us to characterise a causal structure by the possibilities it offers for signalling. In
relativity, the analysis of the causal relations between events is conceptually straightforward and is dictated by the
space–timemetric. An eventB is contained in the causal future of an eventA if there exists a future-directed
space–time path connectingA toB such that the tangent vector to this path is everywhere time-like or null. If this
is the case, thenA can signal toB (an intervention atA can in principle affect the probabilities for observations at
B); otherwise signalling fromA toB is impossible. Interestingly, the information about the causal structure
between all points of a space–time is sufficient to reconstruct the topology of space–time, as well as themetric up
to a conformal transformation [43]. This fact suggests that studying the causal structures allowed by quantum
mechanics could lead to insights about the nature of space–time in the quantum regime.

Given that ourmost fundamental theory ofmatter is quantummechanics, it is natural towish for a
definition of ‘quantum events’ in terms of quantum systems. There are difficulties in following the strategy of
general relativity, and defining space–time via coincidences of quantumfields, because thematterfields
generally do not takewell-defined values and are instead represented by operators on aHilbert space. But one
also cannot rely on the existence of classical ‘rods and clocks’ to define events: as a concrete example, consider
spontaneous emission—the phenomena bywhich the interaction of an atomwith the quantised
electromagnetic fieldmakes the excited states of the atomdecay. Suppose that an atom is prepared in an excited
state, while the electromagnetic field is in the vacuum state. To this preparation is associated a probability for a
photon to be detected by a nearby detector, after a certain amount of external time has elapsed. The detection of
the photon by the detector defines an event, but this event does not occur at a pre-defined value of the
background time. This simple examplemotivates our requirement that quantummechanical events (such as the
‘clicking’ of a detector)must be identifiedwith respect to physical systems, rather than by referring to an external
classical space–time.

In this work, we take an operational approach that does not refer to a background space–time, and identify
events with basic experimental procedures that act on quantum systems.More precisely, an event is
operationally definedwith respect to a localised physical system (we refer to the region inwhich this system is
localised as a ‘laboratory’) and consists in four ‘instantaneous’ steps

1.Heralding: a signal asserts that the systemhas entered the laboratory4.

2. Intervention: a choice x ismade for the operation to be applied on the system.

4
The heralding step is actually quite subtle to treat in full generality. The signal could come from ameasurement on the incoming quantum

system, from a classical clock inside the laboratory (waiting until a specific time at which the system is guaranteed to arrive), etc.Wewill
assume that the heralding does not disturb the state of the system and that it happenswith probability one (the system is guaranteed to
eventually enter the lab). This last assumption is a restriction on the generality of the approach: there are physically relevant situationswhere
the systemonly enters the labwith some probability, and it would be interesting to further investigate howone can treat such probabilistic
events.

3
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3.Observation: a classical outcome a is recorded.

4.Output: a physical system (whose state generally depends on x and a) exits the laboratory.

In quantum theory onfinite-dimensional Hilbert spaces, we associate aHilbert spaceAI to the input system
of the laboratory, andAO to its output system. Figure 1 depicts the intervention, observation, and output steps.
In the intervention step, a choice x of a quantum instrument that acts on the input quantum system ismade: this
is represented by a collection A A:a x I O  { ( ) ( )}∣ of completely positivemaps such that outcome a
occurs with probability p a x tr a x r=( ∣ ) ( ( ))∣ , when the input state is ρ. The output state is then

tr
. 1A a x

A

a x

I

I


r

r
r


( )

( ( ))
( )∣

∣

The normalisation of probabilities enforces that a a xå ∣ is a completely-positive trace-preserving (CPTP)map
for all x.

2.2. The causal reference frame of an event
In this work, we study causality by using operationally defined events as our basic ingredients, rather than relying
on a background space and time.We associate to each event an observer, fromwhose point of viewwemay
describe physics; wewill sometimes use the term observer-event to emphasise this. Tomake a connectionwith
the usual time-ordered descriptions of physics, we postulate that there is a causal reference frame (which can be
interpreted as an observer-dependent time function) associated to each observer-event, according towhich this
event is localised in space and in time. According to this reference frame, there should be awell-defined
evolution from the past to the present, and from the present to the future.

As discussed in the previous section, events are definedwith respect to a quantum system.Wewill consider
events that are definedwith respect to a subsystemof some ‘global’ quantum systemwhoseHilbert space is.
ThisHilbert space can be decomposed as A EI A = Ä , whereAI is identifiedwith the input space of Alice’s
laboratory, andwhere EA is an ‘environment’ onwhichAlice acts as the identity. The outputHilbert space of
Alice’s laboratory isAO and it is assumed to be isomorphic toAI

5. If we assume that the global quantum system
 is isolated at times other than that of the event, then the evolutions from P to A EI AÄ , and from A EO AÄ to
F are unitary. Thus there exists unitaries P A E:A I AP  Ä and A E F:A O AF Ä  such that the global
evolution frompast to future, whenAlice performs the quantum instrument a x{ }∣ is

, 2A a x
A A E

A
I O A f pÄ◦( ) ◦ ( )∣

where ,A A A A A Ap r r f r r= P P = F F( ) ( )† † , and EA is the identitymap on the environment degrees of freedom.
If the state in the distant past is Pr , the outcome a of the instrument occurs with probability

Figure 1.The input system is described by density operator ρ on theHilbert spaceAI, and the entering of the system in the laboratory
heralds the event. After a choice of setting x and the recording of an outcome a, the (unnormalised) state of the output system is

a x r( )∣ .

5
It is not a real restriction to impose that A AI O@ , because we can emulate any process that has A Adim dimI O¹ by enlarging the smallest

Hilbert space and tracing over the unwanted dimensions. It is convenient to label theHilbert spaces of the global system in the past and in the
future—both isomorphic to —differently, as P and F.

4
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p a x tr tr . 3a x
A A

E A
P

A
I O

A r= P P( ∣ ) ( ( ( )) ( )∣
†

Equivalently, this evolution can be representedwith a quantum circuit as

ð4Þ

There is some arbitrariness in the decomposition of the evolution into a past AP and a future AF , which is
similar to the arbitrariness in choosing a time coordinate in relativity. For example, the parts of the evolution
that are at ‘space-like separated locations’ fromAlice’s event can be arbitrarilymoved to the future or to the past.
Our definition of causal reference frameswill deal with this arbitrariness.

Consider now a physical situation comprising of more than one observer-event; for simplicity of
notation we consider only two of them, Alice and Bob, whose respective input and output Hilbert spaces are
assumed to be isomorphic: A A B B,I O I O@ @ . As in section 2.2, each party has an associated causal
reference frame, with corresponding unitaries ,A AP F and ,B BP F . Wemake the assumption of ‘free-
choice’, to guarantee that the choice of operationmade by the parties can be treated as an independent
classical variable. Thus we treat the unitary evolutions in the past and future of Alice’s event, ,A AP F as
functions of Bob’s choice of instrument, and vice-versa. For the time being, we consider only the case where
both parties are performing unitaries on their quantum system, in which case wemake the following
definitions.

Definition 1 (Frame functions).A frame function for Alice is a pair of functions ,A AP F( ) each sending linear
transformations T B B:B I O to linear transformations

T P A E: , 5A B I AP  Ä( ) ( )

T A E F: , 6A B O AF Ä ( ) ( )

such that U U,A B A BP F( ) ( ) are unitary wheneverUB is unitary.

It is important to note thatwe are not requiring that the functions ,A AF P be linear inTB.

Definition 2 (Causal reference frame).Alice’s causal reference frame is an equivalence class of frame functions.
Two frame functions ,A AP F( ) and ,A AP¢ F¢( ) are equivalent if

U U U U U U , 7A B A
E

A B A B A
E

A BA A F Ä P = F¢ Ä P¢( )( ) ( ) ( )( ) ( ) ( )

for all unitariesU A A:A I O andU B B:B I O . In the above, EA is the identity operator that acts on EA. Bob’s
causal reference frame is defined analogously, with the obviousmodifications.

There are in generalmany frame functions in the equivalence class. For example, given a frame function
,A AP F( ), and an arbitrary unitaryV EA, we see that VA A

A EAF¢ = F Ä( ) and VA
A E

AAP¢ = Ä P( ( ) )† belong to
the same causal reference frame.Wewill usually use a single frame function ,A AP F( ) to define a causal reference
frame, where implicitly wemean that ,A AP F( ) is one representative of the equivalence class.

When there aremore than one party involved in the process, each party will have its associated causal
reference frame.Wewant to formulate, in the least restrictive way as possible, the requirement that the
causal reference of both parties are describing the same physical process. In every observer’s event causal
reference frame (according to its ‘observer-dependent time function’) there is a time in the distant past
before which none of the parties has acted yet, and a time in the future after which all the parties have
finished acting.We impose a consistency requirement (defined formally in definition 3), to ensure that the
unitarymapping ‘in’ states to ‘out’ states at these distant times is the same for all observers, but we will not
assume a well-defined ordering of the events. The role of this requirement is to enforce that the parties are
describing the same physical situation6. A way to interpret this requirement is that we want the global
evolution from P to F to be observer independent, but we allow its decomposition into a ‘past’ and a ‘future’
to depend on the observer.

6
It should not be interpreted as equivalent to logical consistency, in the sameway that a situation inwhich Alice says ‘hello’ andBob hears

‘goodbye’ is logically consistent, but relatively uninteresting for physics.

5
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Definition 3 (Consistent causal reference frames).Apair of causal reference frames , , ,A A B BP F P F( ) ( ) for
Alice and Bob are consistent7 if for all unitariesU A A:A I O andU B B:B I O ,

U U U U U U U U, . 8A B A
E

A B B A B
E

B A A BA B  F Ä P = F Ä P( )( ) ( ) ( )( ) ( ) ≔ ( ) ( )

Equivalently, in circuit notation, the consistency conditionmeans that the frame functionsmust satisfy

ð9Þ

for all unitariesU U,A B.
Onemight prefer the consistency requirement to be formulated purely in terms of device-independent

quantities, such as probabilities for the outcomes ofmeasurements. This can be achievedwithout changing the
mathematical description, simply by reinterpreting P as the outputHilbert space of a third party, and F as the
inputHilbert space of a fourth party. For the operationally inclined, the quantum evolution U U,A B( ) between
P and F is just a concise encoding for the probabilities ofmeasurement outcomes at F, conditional on a state
preparation atP, and on the applied unitariesU U,A B.

Definition 3 can be easily generalised toN parties A A A, , ... N1 2 , inwhich case A1
P will be a function of

U U, ...,A AN2
, etc. The consistency condition is then to be imposed between the causal frames of all parties.

Our definitions do not yet specify what happens when the parties perform general quantum instruments. In
order to study phenomena such as the violation of causal inequalities, we need to calculate the outcome
probabilities of general quantum instruments, and in the case the evolution fromP to Fwill be a general
quantum channel. Fortunately, wewill show in section 3 that formulating our definitions uniquely in terms of
unitaries is not a restriction. Indeed, wewill prove that equation (8) for the action of  on unitaries uniquely
specifies a pure processmatrix [27], which can then be used to calculate the outcome probabilities for general
quantum instruments. Said differently: if wewant to extend  to a linearmap on quantum instruments that
agrees with equation (8) for unitaries, there is a uniqueway to do so.

However, beforewe turn to proving the equivalence with the processmatrix formalism, we give a few
examples of processes that admit a description in terms of consistent causal reference frames.

2.3. Example: causally ordered process
A causally ordered bipartite process is one inwhich one of the parties cannot signal to the other. A process has
the order A B if nomatter his choice of local operation,B cannot signal toA. In general, all pure bipartite
processes with causal order A B are ‘channels withmemory’, of the form [44]

ð10Þ

for some fixed unitariesV V V, ,1 2 3.We see directly that the above circuit can be used to represent bothAlice’s
causal frame andBob’s causal frame. Therefore, for causally ordered processes it is possible tofind a causal
reference frame inwhich bothA andB are both ‘localised in time’: in the abovewe have thatB is localised in the
future ofA.

2.4. Example: the quantum switch
An interesting example of a physically relevant process that does not possess awell-defined causal order is the
quantum switch [18, 45]. Nevertheless, we can choose any single observer, and decompose the process into a
past and a future relative to his observer-event. Furthermore, it is possible to describe the past and future
evolutions in a unitaryway. The simplest version of the quantum switch is a bipartite process with

P Fdim dim 4= =( ) ( ) and A Bdim dim 2= =( ) ( ) . In circuit notation, we canwrite it according toAlice’s
causal reference frame as

ð11Þ

7
Onemight object to the fact that the consistency condition of equation (8) supposes that the parties are describing the state atP and F in the

same basis.We could have also defined the consistency condition ‘up to unitary’: in that case, the consistency conditionwould be that there
exists constant unitariesU V, such that U U I U U U U I U VA B A

E
A B B A B

E
B AA BF Ä P = F Ä P( )( ) ( ) ( )( ) ( ) . However, this change of basis does

not change anything for causality, and can be dealt with separately.

6
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while in Bob’s causal reference frame it is

ð12Þ

In the above circuits, the upper qubit is the control-qubit, denoted byC, and the lower qubit is the ‘target’ qubit
whichwe denote by S. A black circlemeans control on the state 1 Cñ∣ , while awhite circle is a control on the state
0 Cñ∣ . It is straightforward to check that both circuits yield the same global evolution U U,A B( ) from P to F. This
example shows that the consistency condition can be satisfied by processes inwhich one of the parties is
delocalised in time: herewe have U U0 0 1 1A B

C S C
B
SP = ñá Ä + ñá Ä( ) ∣ ∣ ∣ ∣

and U U0 0 1 1A B C B
C SF = ñá Ä + ñá Ä( ) ∣ ∣ ∣ ∣ .

A common argument (see the supplementary information of [46]) attempts to conclude that the quantum
switch, as realised in quantumoptics experiments is ‘not the real thing’, in that it can be describedwith a space–
time diagram that involves two space–time points per party, rather than only one.However as discussed in
section 2.1, space–time points do not have an priori physicalmeaning even in classical physics, and one should
not expect them to fare better once quantummechanics enters the picture. The time-delocalisation of a local
operation in the quantum switch does notmean that the operation is performedmultiple times; it is executed
only once, but on a time-delocalised subsystem, as argued byOreshkov [36]. Our approachwith causal reference
frames provides ameans to describe any pure process as the observer-dependent time evolution of a quantum
system; during this evolution the time-localisation of events is generally observer dependent as shown by
equations (11), (12) in the case of the quantum switch.

3. Equivalencewith the processmatrix formalism

In definition 3, we have proposed a relational definition of ‘processes’ as a set of causal reference frames that obey
a consistency condition. In this section, wemake an explicit connection between the already existing process
matrix formalism [17] and the newly developed language of causal reference frames. Namely, we show that pure
processes [27] are in one-to-one correspondence with consistent causal reference frames. This equivalence will
also show that wewere justified, in the previous section, in limiting our definitions to the unitary case. The
notation for the processmatrix formalism relies heavily on the channel-state duality, or Choi–Jamio�kowski (CJ)
isomorphism, which is reviewed in appendix A. In the following, we follow common usage in the literature,
where the terms ‘process’ and ‘processmatrix’ are used interchangeably (altough the latter could be seen as the
mathematical representation of the former; this is analogous to the relation between the terms ‘quantum state’
and ‘densitymatrix’).

3.1. Pure processes
In the original paper byOreshkov et al [17], a processmatrix is defined as a functional on quantum instruments,
obeying the requirement that probabilities arewell-defined for all possible operations of the parties, including
operations that involve shared entangled ancillary systems (this last condition ensures that the processmatrix is
positive semidefinite). It can bemore convenient to view processmatrices as ‘supermaps’ [47] that takes the local
quantum channels of the parties and sends them to a quantum channel from a pastHilbert spaceP to a future
Hilbert space F. General formalisms for higher-order transformations, which include processmatrices as special

Figure 2.Graphical representation of the relevantHilbert spaces fromdefinition 4 of a bipartite processmatrix.

7
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cases are presented in [48–50], and it would be interesting to investigate whether an analogous theory of causal
reference frames can be developed for thesemore general frameworks.

For the sakeof simplicity, inwhat followswe consideronly twoparties,Alice andBob, as shown infigure2.The
extensionof thedefinitions tomoreparties is straightforward, andall the results of this section continue tohold in the
multipartite case.The localised laboratoryofAlicehas afinite dimensional inputHilbert spaceAI andoutput spaceAO;
similarlyBobhas inputBI andoutputBO.We further allow theparties tohave arbitrary ancillaryHilbert spaces
A A B B, , ,I O I O¢ ¢ ¢ ¢ ,which aredirectly connected to the future (resp. past), as shown infigure2.Aquantumchannel for
Alice is a completelypositive and trace-preserving (CPTP)map A A A A: I I O O  ¢  ¢( ) ( ),where tensorproducts
are implied so that A A A AI I I I¢ = Ä ¢. Equivalently, theChoi state of aCPTPmap (see the review in appendixA)obeys
M 0A A A AI I O O ¢ ¢ and MtrA A

A A A A A A
O O

I I O O I I=¢
¢ ¢ ¢.We sometimesuse superscripts to indicate theHilbert spaces on

which anoperator acts.
We define processmatrices as in [27] 8.

Definition 4 (Processmatrix).AnoperatorW PFA A B BPFA A B B
I O I O

I O I O Î ( ) is a processmatrix if for all CPTP
maps A A A A B B B B: , :x I I O O y I I O O     ¢  ¢ ¢  ¢( ) ( ) ( ) ( ), where A A B B, , ,I O I O¢ ¢ ¢ ¢ are ancillaryHilbert
spaces of arbitrary dimension, the operator

G W M Mtr 13xy A A B B
T

x
A A A A

y
B B B B

I O I O
AI AOBI BO I I O O I I O O= Ä¢ ¢ ¢ ¢( ( )) ( )

is the Choi state of a CPTPmap from PA BI I¢ ¢ to FA BO O¢ ¢ , i.e. GtrFA B xy
PA B

O O
I I=¢ ¢
¢ ¢. In the above,W TAI AOBI BO is the

partial transpose ofW on the A A B B, , ,I O I O Hilbert spaces, while Mx and My are theChoi operators

corresponding to theCPTPmaps x
A A A AI I O O ¢ ¢ and y

B B B BI I O O ¢ ¢ .

This view of processes as a supermaps M M Gx y xyÄ  allows one to define pure processes [27], of whichwe
recall the definition.

Definition 5 (Pure process).AprocessmatrixW PFA A B BI O I O is pure if, for all ancillaryHilbert spaces
A A B B, , ,I O I O¢ ¢ ¢ ¢ 9, and all unitariesU A A A A V B B B B: , :I I O O I I O O¢  ¢ ¢  ¢ , the resulting transformation

G W U U V Vtr , 14UV A A B B
T

I O I O
AI AOBI BO= Ä( ∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣) ( )

is the Choi state of a unitary channel from PA BI I¢ ¢ to FA BO O¢ ¢ .

Purifiable processes are processes that canbeobtained from somepure process after tracing out certaindegrees
of freedom. In contrast to the familiar situations in quantum information,where through the use of an ancillary
Hilbert space anymixed state canbe purified and any quantumchannel canbe dilated to a unitary channel, there
exists processes that cannot bepurified [27]. Purifiable processes havebeen argued to bemore reasonable
physically, because the irreversiblity that occurswithin themcanbe interpreted as arising fromforgettingdegrees of
freedom in a fundamentally reversible process. In this sectionweobtain another justification for the reasonableness
of pure processes: those are precisely the processes that admit a description in termsof causal frames of reference.

We collect here an important characterisation of pure processes, whose proof is provided in [27].

Theorem3.1.AprocessW is pure if and only ifW U Uw w= ∣ ⟫⟪ ∣ for some unitaryU PA B FA B:w O O I I .

We stress that the above theoremdoes notmean that all unitariesU PA B FA B: O O I I are such that U U∣ ⟫⟪ ∣
is a process.

Theorem 3.1 allows to simplify the expression forGUV in equation (14). LetW w w= ñá∣ ∣be a pure process,
and define

U V w U V, , 15PA B FA B T A A A A B B B B,I I O O AI AOBI BO I I O O I I O O ñ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢∣ ( )⟫ ≔ ∣ · ∣ ⟫ ∣ ⟫ ( )

where w A A B B PF:T
I O I OAI AOBI BOñ ∣ is thematrix obtained by partial transpose of wñ∣ . Thenwe have that

G U V U V, , . 16UV  = ∣ ( )⟫⟪ ( )∣ ( )

Wemake a few comment about the dimensions of theHilbert space.Wefirst observe that no loss of
generality occurs by restricting our attention to pure processes inwhich d d d d,A A B BI O I O

= = and dP�= �dF.
Indeed, supposeW PFA A B BI O I O is pure a process for which the input-output dimensions do notmatch.We can
just add newHilbert spaces A A B B, , ,I O I O¢ ¢ ¢ ¢ tomake the dimensionmatch.We define

8
However, our notation differs in that we useAI for Alice’s inputHilbert space, while [27] usesAI for the space ofmatrices acting on the

inputHilbert space.
9
The dimensions of the primedHilbert spacesmust satisfy d d d d d d d d,A A A A B B B BI I O O I I O O

= =¢ ¢ ¢ ¢ , and d d d d d dP A B F A BI I O O
=¢ ¢ ¢ ¢ .

8
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W W , 17PFA A B B P A P B A F B FI O I O A I B I O A O B       = Ä Ä Ä Ä¢ ¢ ¢ ¢˜ ∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣ ∣ ⟫⟪ ∣ ( )

where P AA I@ ¢ , P BB I@ ¢ , F AA O@ ¢ , F BB O@ ¢ . The newprocess W̃ is pure and acts on theHilbert spaces
P PP PA B=˜ , F FF FA B=˜ , A A AI I I= ¢˜ , A A AO O O= ¢˜ , B B BI I I= ¢˜ , B B BO O O= ¢˜ ,where now the input and output
Hilbert spaces have the same dimension.We can recoverW from W̃ by tracing out over the primedHilbert
spaces. A second observations is that lemmaB.2 from the appendix implies that the dimensions d d dA A AI O

=≔
and d d dB B BI O

=≔ must be divisors of dP�= �dF in order for a process to be pure.

Definition 6 (The inducedmapof a pure process). LetW be a pure process with d dA AI O
= ,

d d d d,B B P FI O
= = . The inducedmap  is the bilinearmap that sends pairs of unitariesU A A: I O to

V B B: I O to a unitary U V P F, : ( ) , defined by

U V w U V, . 18PF T A A B BAI AOBI BO I O I O ñ∣ ( )⟫ ≔ ∣ · ∣ ⟫ ∣ ⟫ ( )

Processes where parties have the same input and outputHilbert space dimension are fully determined by their
action on unitaries:

Proposition 3.2. LetW w w= ñá∣ ∣be a pure bipartite process with d d d d d d d d, ,A A A B B B P FI O I O
= = =≕ ≕ ,

and let  be it is inducedmap as in definition 6. Let U V,i i
d

j j
d

1 1
A B
2 2

= ={ } { } be orthonormal bases of unitaries (see
appendix A) for Alice’s and Bob’s Hilbert space, respectively. Then

w
d d

U V U V
1

, . 19
A B i j

i j
PF

i
A A

j
B B

,

I O I O* *åñ =∣ ∣ ( )⟫ ∣ ⟫ ∣ ⟫ ( )

Proof. Since wñ∣ is a pure state, and that U Vi j* *Ä∣ ⟫ ∣ ⟫ forms a basis for A A B B w,I O I OÄ Ä Ä ñ∣ can be
expanded as

w U V , 20
i j

i j
PF

i
A A

j
B B

,
,

I O I O* *å yñ = ñ∣ ∣ ∣ ⟫ ∣ ⟫ ( )

where i j,y ñ∣ are vectors that wemust determine. Equation (15) togetherwith equation (A4) yields

U V w U V d d, . 21i j
PF T

i
A A

j
B B

A B i j
PF

,AI AOBI BO I O I O y= ñ = ñ∣ ( )⟫ ∣ ∣ ⟫ ∣ ⟫ ∣ ( )

+

Theorem3.3.Every pair of compatible causal reference frame as in definition 3,
U U U U U U U U,A B A B A

E
A B B A B

E
B AA B  = F Ä P = F Ä P( ) ( )( ) ( ) ( )( ) ( ), defines a valid pure process

w
d d

U V U V
1

, , 22
A B i j

i j
PF

i
A A

j
B B

,

I O I O* *åñ =∣ ∣ ( )⟫ ∣ ⟫ ∣ ⟫ ( )

where U A A:i I O i
d

1
A
2

 ={ } and V B B:j I O j
d

1
B
2

 ={ } are a basis of orthonormal unitaries.

Proof. Let wñ∣ be as above, let A A B B,I O I O¢ @ ¢ ¢ @ ¢ be ancillaryHilbert spaces of any dimension, and let
M A A A A: I I O O¢  ¢ and N B B B B: I I O O¢  ¢ be unitaries. These can be expanded in a basis as

M U a , 23
i

i iå= Ä ( )

N V b , 24
i

j jå= Ä ( )

where U A A:i I O i
d

1
A
2

 ={ } and V B B:j I O j
d

1
B
2

 ={ } are a basis of orthonormal unitaries, and a A A: ,i I O¢  ¢

b B B:j I O¢  ¢ are linearmaps, not necessarily unitary. The transformation induced by M N, is

M N w M N, , 25PA B FA B T A A A A B B B BI I O O AI AOBI BO I I O O I I O O ñ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢∣ ( )⟫ ≔ ∣ ∣ ⟫ ∣ ⟫ ( )

U V a b, , 26
i j

i j
PF

i
A A

j
B B

,

I O I Oå= ¢ ¢ ¢ ¢∣ ( )⟫ ∣ ⟫ ∣ ⟫ ( )

and showing that the process is valid and pure is equivalent to showing that

M N U V a b, , , 27
i j

i j i j
,

 å= Ä Ä( ) ( ) ( )

is a unitary from PA BI I¢ ¢ to FA BO O¢ ¢ .

9
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Wefirst write U V,i j( ) in Alice’s causal reference frame

M N V U V a b, , 28
i j

A j i
E

A j i j
,

A å= F Ä P Ä Ä( ) ( ( )( ) ( )) ( )

f V b , 29
j

M j jå= Ä( ) ( )

where P A EA= Ä , and in the last line we defined f V PA FA:M I O¢  ¢( ) as

f V V U V a V U a V . 30M
i

A i
E

A i A
A

i
i

E
i A

AA O A I   å å= F Ä P Ä = F Ä Ä Ä P Ä¢ ¢
�

�
�

�

�
�( ) ( ( )( ) ( )) ( ( ) ) ( ( ) ) ( )

The second equality above, togetherwith equation (23)makes it clear that fM(V ) is unitarywheneverV is unitary,
because it is a product of three unitaries. Notice also that fM(V ) is a linear function both inM and inV, so it is
continuous in those two variables. Linearity inV is proven by switching to Bob’s causal frame:

f V U V U a . 31M
i

B i
E

B i iBå= F Ä P Ä( ) ( ( )( ) ( )) ( )

Therefore fM(V ) satisfies the conditions ofMarcus’ theoremB.5 fromappendix B, andwe conclude that
either

f V S V T , 32M M
E A

M
B I= Ä ¢( ) ( ) ( )

f V S V Tor , 33M M
T E A

M
B I= Ä ¢( ) ( ) ( )

for some unitariesT PA A A E:M I I I A¢  ¢ and S A A E FA:M O I A O¢  ¢ that depend onM. Equivalently, there exists a
unitaryU PA FAM I OÎ ¢ ¢( ), such that

f V U V . 34M
PA FA

M
PF A A,I O I O = Ä Ä¢ ¢ ¢ ¢∣ ( )⟫ (∣ ⟫ ∣ ⟫ ) ( )

Indeed, if equation (32) holds, thenU S TM M
FA

M
T PAO I= Ä

¢ ¢( ) , while if equation (33)holds, thenU SM M
FAO= Ä

¢˜
T SWAPM

T PA
PFI

¢( ˜ ) · . Here we have defined S FAM OÎ ¢˜ ( ) from SM by using a basis-dependent isomorphism
between A A EO I A¢ and FAO¢ , and similarly forT PAM IÎ ¢˜ ( ).

We now show that the fact that f is a continuousmap fromM to functionsV f VM ( ) implies that
equation (32) holds for allM. Indeed, takingM to be the identitymap

i j i j:A A A A A A A AI O I O I I O O Ä ñ ñ ñ ñ ¢ ¢ ¢ ¢∣ ∣ ∣ ∣ ,we get from equation (31) that

f V V , 35B
E

B
A AB I O   = F Ä P Ä ¢ ¢( ) ( ( )( ) ( )) ( )

which shows that f takes the formof equation (32), without a transpose. Letting nowMbe an arbitrary unitary,we
can take a continuouspathγ from 0 g =( ) to M1g =( ) in the space of unitaries. By continuity, equation (34)
will giveus a continuous path g¢ ofunitaries in PA FAI O ¢ ¢( ), starting at 0 B

F
B

T P A AI I  g¢ = F Ä P Ä ¢( ) ( ) ( ( ) )
and ending at U1 Mg¢ =( ) . LetHbe the subgroupof unitaries of the formU UFA PA

1 2
O IÄ
¢ ¢

, let K SWAP,= { }, and
letG H K= · be the product of those two subgroups. At eachpoint t 0, 1Î [ ]of thepath, theunitary tg¢( ) has to
be inG. The identity component ofG isH and continuous paths inGmust remain in the same connected
component10 ;�since H0g¢ Î( ) , itmust be that U H1 Mg¢ = Î( ) . Thereforewehave that fM(V )obeys
equation (32) for allM.

Thuswe have

M N S V T b, , 36
j

M j
E A

M j
B I å= Ä Ä¢( ) ( ( ) ) ( )

S V b T , 37M
B

j
j

E
j M

BO B I  å= Ä Ä Ä Ä¢ ¢
�

�
��

�

�
��( ) ( ) ( )

and equation (24) shows that M N,( ) is unitary, since it is the product of three unitaries. +

The proof above can be generalised recursively to any number of parties, as we sketch here. Assume that
every N 1- partite compatible causal reference frames defines a valid pure process and let U U, ..., N1( ) be
compatible reference frames forN parties. Thenwe have to show that M M, ..., N1( ) defined as the obvious
generalisation of equation (27) is unitary, where as before, M U ai k i

k
i
k= å Ä , for i N1, ...Î { }. Defining

10
Oneway to see thatH and H SWAP· are not connected is to use the continousmap G: f  , defined by U detf =( )

U UtrP P
P F A A P F A A,I O I O

1 2
1 1 2 2¢ ¢  ( ∣ ⟫⟪ ∣ ). Thismap evaluates to 0 inH, and to 1 in H SWAP· .

10
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U U U U a a, ..., , ... , 38M M N
i i

i
N
i

N
i

N
i

, ,
, ...,

1 1 1 1N

N

N N
1 1

1 1

1 1 1 1 å= Ä Ä Ä¼ - --

-

- -( ) ( ) ( )

we get

M M U a, ..., . 39N
k

M M N
k

N
k

1 , , N1 1 å= Ä¼ -( ) ( ) ( )

Nowby the recursion assumption, UM M N, , N1 1
 ¼ - ( ) is unitary, and it is linear inUN as can be seen by usingAN�s

causal reference frame decomposition for  in the equation (38). Therefore (using as before the generalisation of
Marcus’ theorem and a continuity argument to get rid of the transpose), there exists unitaries
S T,M M M M, , , ,N N1 1 1 1¼ ¼- - which depend on M M, .... N1 1- , and such that

U S U T . 40M M N M M N M M, , , , , ,N N N1 1 1 1 1 1 = Ä¼ ¼ ¼- - -( ) ( ) ( )

Plugging this into equation (39) shows that M M, ..., N1( ) is unitary, which completes the proof by recursion.
Wenowprovide an expression for pure processes thatmakesmanifest the existence of the causal reference

frame decomposition for one of the parties.

Theorem3.4.The process vector wñ∣ corresponding to a pair of consistent causal reference frames as in definition 3,
U U U U U U U U,A B A B A

E
A B B A B

E
B AA B  = F Ä P = F Ä P( ) ( )( ) ( ) ( )( ) ( ) can bewritten such that the causal frame of

one party (in the following, Alice’s) appears explicitly as

w
d

V V V
1

, 41
B

E E

j
A j

P A E
A j

A E F
j

B B, ,I O I I O O I O* åñ = P F∣ ⟪ ∣ ∣ ( )⟫ ∣ ( )⟫ ∣ ⟫ ( )

where E E,I O areHilbert spaces isomorphic to EA, andwhere V B B:j I O j
d

1
B
2

 ={ } is a basis of orthonormal unitaries.

Proof. From theorem 3.3, wemaywrite

w
d d

U V U V
1

, 42
A B i j

i j
PF

i
A A

j
B B

,

I O I O* *åñ =∣ ∣ ( )⟫ ∣ ⟫ ∣ ⟫ ( )

d d
V U V U V

1
. 43

A B i j
A j i A j

PF
i

A A
j

B B

,

I O I O* *å= F Ä P∣ ( )( ) ( )⟫ ∣ ⟫ ∣ ⟫ ( )

Weprove the statement by ‘expanding’ wñ∣ in the Ui
A AI O*{∣ ⟫ }basis:

U w
d

V U V V
1

44i
A A

B j
A j i A j

PF
j

B BI O I O* *åñ = F Ä P⟪ ∣ ∣ ∣ ( )( ) ( )⟫ ∣ ⟫ ( )

U
d

V V V
1

, 45i
A A E E

B j
A j

A E F
A j

P A E
j

B B, ,I O I O O O I I I O* * å= Ä F P
�

�
��

�

�
��(⟪ ∣ ⟪ ∣ ) ∣ ( )⟫ ∣ ( )⟫ ∣ ⟫ ( )

where in the second linewe used propositionA.1, andwhere E E,I O are two isomorphic copies ofEA. +

This theorem can also be straightforwardly generalised to any number of parties.
Finally, we prove the converse of theorem 3.3, thus showing that pure processes are equivalent to causal

frames of reference.

Theorem3.5. IfW is a pure process withmatching input and output dimensions d d d d d d, ,A A B B P FI O I O
= = = ,

then its inducedmap  admits a decomposition into causal frames as in definition 3.

Proof.Make all parties except one of them (herewe takeAlice w.l.o.g.) perform afixed unitary; in the bipartite
case there is only Bob performing the fixed unitaryUB, but the argument applies for any number of parties. Then

U, B(· ) defines a linear function thatmaps the unitaries of Alice to unitaries from P to F. Using theoremB.5 on
themapU U U,A A B ( ) gives us that either

U U U U U, 46A B A B A
E

A BA = F Ä P( ) ( )( ) ( ) ( )

U U U U Uor , , 47A B A B A
T E

A BA = F Ä P( ) ( )( ) ( ) ( )

where U U,A B A BF P( ) ( ) are unitaries that depend onUB.We show byway of contradiction that equation (47) is
not possible because the process would not send arbitrary CPTPmaps toCPTPmaps. Following the same steps
as in the proof of theorem 3.4, and recalling that U SWAP UT A A

A A
A AI O

I O
I O=∣ ⟫ ∣ ⟫ , we find that if equation (47)

holds, then wñ∣ has the form

11
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w
d

SWAP V V V
1

. 48
B

E E
A A

j
A j

A E F
A j

P A E
j

B B, ,I O
I O

O O I I I O* åñ = F P∣ ⟪ ∣ ∣ ( )⟫ ∣ ( )⟫ ∣ ⟫ ( )

Therefore, if A AI O y yÄ ñá∣ ∣ is Alice’s choice of instrument, while Bob performs the unitaryUB, then the
resultingmap G PFÎ ( ), calculated according to equation (13), is

G w w U Utr 49A A B B
T A A

B B
B B

I O I O
AI AOBI BO I O I O y y= ñá Ä ñá Ä(∣ ∣ · ( ∣ ∣ ) ∣ ⟫⟪ ∣ ) ( )

w U w Utr , 50A A B B
A A

I O
I O* * y y= ñá Ä ñá(∣ ( ) ( )∣ · ( ∣ ∣ )) ( )

wherewe defined

w U
d

SWAP U U
1

. 51B
PA A F

B

E E
A A A B

A E F
A B

P A E, ,I O I O
I O

O O I Iñ F P∣ ( ) ≔ ⟪ ∣ ∣ ( )⟫ ∣ ( )⟫ ( )

In order for the process to be valid, itmust be the case that GtrF
P= . Let us define

G w wtrA A
A A

I O
I O* * y y¢ Ä ñá ¢ñá ¢≔ ( ∣ ∣ · ∣ ∣), where

w
d

SWAP
1

52
B

E E
A A

A E F P A E, ,I O
I O

O O I I  ¢ñ∣ ≔ ⟪ ∣ ∣ ⟫ ∣ ⟫ ( )

d
SWAP

1
53

B

E E
A A

A F E F P A P EI O
I O

O A O E A I E I    = ⟪ ∣ ∣ ⟫ ∣ ⟫ ∣ ⟫ ∣ ⟫ ( )

, 54A F P A P FI A A O E E  = ∣ ⟫ ∣ ⟫ ∣ ⟫ ( )

andwherewe decomposed P P P F F F,A E A E= Ä = Ä .We can see that w UB ñ∣ ( ) and w¢ñ∣ are related by the
application of local unitaries onP and F. These do not change the Schmidt coefficients, and it implies that GtrF

has the same spectrum as GtrF ¢. But

G w wtr tr , 55F FA A
A P P

I O
O A E* * * * y y y y¢ = ñá ¢ñá ¢ = ñá Ä(∣ ∣ · ∣ ∣) ∣ ∣ ( )

so GtrF has some of its eigenvalues equal to zero. Thuswe reach a contradictionwith the assumption that
GtrF

P= , andwe conclude that equation (46)must hold.We can repeat the argument for all parties. +

4. The causal reference frames of causal inequality violating processes

In this sectionwe investigate the causal reference frames description of some processes that can violate causal
inequalities. An interesting pure tripartite process which is known to violate causal inequalities was already
studied in [26–28].Written as a process vector, it is equal to

w fy x y x x , 56P O I F

x y,
åñ = ñ ñ Å ñ ñ∣ ∣ ∣ ∣ ( ) ∣ ( )

where I A B C O A B C,I I I O O O= = , wherewe use bold-face notation for three-component binary vectors and
where

f a b c, , 0, 0, 0 1, 0, 0 0, 1, 0 0, 0, 1 . 57b c a c a b,0 ,1 ,1 ,0 ,0 ,1d d d d d d= + + +( ) ( ) ( ) ( ) ( ) ( )

Alternatively, we can describe wñ∣ via it is inducedmap U U U, ,A B C( )

U U U iii U U U iii, , 58A B C A B C ñ = Ä Ä ñ( )∣ ( )∣ ( )

U U U U XU i U U U i, , 01 01 59A B C A A A B C  Ä Ä ñ = Ä Ä ñ( )( )∣ ( )∣ ( )†

U U U U XU i U U U i, , 1 0 1 0 60A B C B B A B C  Ä Ä ñ = Ä Ä ñ( )( )∣ ( )∣ ( )†

U U U U XU i U U U i, , 01 01 , 61A B C C C A B C  Ä Ä ñ = Ä Ä ñ( )( )∣ ( )∣ ( )†

where i 0, 1Î { }.When described fromAlice’s event-frame, it is

ð62Þ

HereX is the Pauli-X operator, and awhite circle is a control by the 0ñ∣ state. This process has the curious feature
that the past AP is linear inUB andUC, but the future AF still depends non-trivially onU U,B C . Interestingly, this
process violates causal inequalities even under the restriction to classical instruments (diagonal in the
computational basis) [28].

We can obtain another valid process by taking the time reverse of wñ∣ , as explained in appendix C. The
result is

12
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w fx y x x y 63r
P O I F

x y,
åñ = ñ Å ñ ñ ñ∣ ∣ ∣ ( ) ∣ ∣ ( )

fx y x y x 64P O I F

x y,
å= ñ ñ ñ Å ñ∣ ∣ ∣ ∣ ( ) ( )

fy x y x y , 65P O I F

x y,
å= ñ ñ ñ Å ñ∣ ∣ ∣ ∣ ( ) ( )

where in the second linewemade the change fy y xÅ ( ) and in the third linewe relabelled x y« .
Equivalently, this process can be describedwith its inducedmap as

U U U iii U U U iii, , , 66r A B C A B C ñ = Ä Ä ñ( )∣ ( )∣ ( )

U U U i XU U U i, , 01 01 , 67r A B C A B C ñ = Ä Ä ñ( )∣ ( )∣ ( )

U U U i U XU U i, , 1 0 1 0 , 68r A B C A B C ñ = Ä Ä ñ( )∣ ( )∣ ( )

U U U i U U XU i, , 01 01 , 69r A B C A B C ñ = Ä Ä ñ( )∣ ( )∣ ( )

where i 0, 1Î { }. Atfirst sight it seems that the transformation r can be understood causally: the parties
parallely applyU U U, ,A B C on the input quantum state Pyñ∣ , and then a Pauli-X gate is applied to the state in a
way that depends on the state in the past yñ∣ . Indeed, in classical theory, this process has a simple realisation: first
copy the input state, then parallely apply the transformationsU U UA B CÄ Ä on the original state, and finally
apply a controlled gate from the copy to the target. Of course, this particular strategy is forbidden in quantum
mechanics because of the no-cloning theorem.

The causal reference frames description of wrñ∣ however tells a different story.Whenwritten inAlice’s causal
reference frame, the process is

ð70Þ

which has the same feature thatwas previously noticed for wñ∣ (now it is the future AF that is linear inU U,B C ,
while AP has non-trivial dependence onUB andUC).

For completeness we note that the process wrñ∣ can also bewritten as a circuit containing linear post-selected
closed timelike curves (CTCs) [26]

ð71Þ

In the above circuit, each loop can be (probabilistically) implemented by, on the left hand side of the loop,
preparing amaximally entangled state i iiF ñ = å ñ ñ+∣ ∣ ∣ , and on the right hand side, performing a Bell
measurement and post-selecting on the outcome F ñ+∣ .We refer the reader to [26] for amore complete
discussion.

Wenow turn to the question of whether wrñ∣ can be used to violate causal inequalities. If the input state in the
past is

u , 72P

u
uåy yñ = ñ∣ ∣ ( )

thenwe define the reduced tripartite processmatrixW I OÎ Äy ( ) by

W w w f fu v x u x vtr . 73PF
P

r r
I O

u v x
u v

, ,

*åy y y y= ñá ñá = ñá Ä + ñá +y (∣ ∣ · ∣ ∣) ∣ ∣ ∣ ( ) ( )∣ ( )

A simple choice of input state is the uniform superposition uP
u

1

2 2
yñ = å ñ∣ ∣ , which yields

W f fu v x u x v
1

8
. 74I O

u v x, ,
å= ñá Ä + ñá +y ∣ ∣ ∣ ( ) ( )∣ ( )
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Wefinishwith some comments about the possible relationships of ourworkwith other approaches. There
are superficial similarities between our framework and the framework of relative-locality [55], inwhich a non-
trivial geometry ofmomentum space leads to the observer-dependent locality of events. The ideas of relative
locality have also been studied in the quantum regime [56]. It is currently unknownwhether relative-locality
allows for the violation of causal inequalities or the realisation of causally non-separable processes. Another
interesting recent development isHardy’s operational reformulation of general relativity [13], and it is an open
questionwhether our treatment of events in quantum causal structures can be reframed in his (potentiallymore
general) formalism.
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AppendixA. CJ isomorphism

Let A A,I O beHilbert spaces of finite dimension dAI
and dAO

, respectively, and let i j,A
i
d A

j
d

0
1

0
1

I AI O AOñ ñ=
-

=
-{ } {∣ } be a

choice of bases forAI andAO.We denote by A A,I O ( ) ( ) the vector space of linear operators acting on A A,I O.
We follow [27, 26] in defining theCJ isomorphism.Wewarn the reader that there exist different conventions

in the literature. For any linear transformation K A A: I O , we define the ‘double-ket’

K i K i . A1A A

i

A AI O I Oå= ñ Ä ñ∣ ⟫ ∣ ( ∣ ) ( )

Let K M A A, : I O . Then the inner product of K∣ ⟫ and M∣ ⟫ in A AI O is equal to theHilbert–Schmidt inner
product of the operators K M, :

M N M Ktr . A2A AI O =⟪ ∣ ⟫ ( ) ( )†

If d d dA A AI O
= ≕ , wewill say that a set of unitaries U A A:i I O i

d
1

A
2

 ={ } is an orthonormal basis if Ui i
d

1
A
2

={∣ ⟫} is a
basis for A AI OÄ and if U U di j A ijd=⟪ ∣ ⟫ .

Wewill oftenmake use of the two easily verified identities

K K i i , A3A A

i

T A AI O I Oå= ñ Ä ñ∣ ⟫ ( ∣ ) ∣ ( )

K K , A4T *=∣ ⟫ ⟪ ∣ ( )

where K A A:T
O I is the transpose ofK, defined by i K j j K iA T A A AI O O Iá ñ = á ñ∣ ∣ ∣ ∣ , and K A A: I O*  is the

complex conjugate j K i j K iA A A AO I O I* *á ñ = á ñ∣ ∣ ( ∣ ∣ ) .
We also note that for any vector v A AI Oñ∣ , the isomorphism can be inverted to get thematrixKv for which

K vv = ñ∣ ⟫ ∣ . The explicit inversion formula is

K v , A5v
TAI= ñ∣ ( )

whereTAI
is the partial transpose on theAIHilbert space, whose definition in the computational basis is

i j j i . A6A A T A AI O AI O Iñ ñ = ñ á(∣ ∣ ) ∣ ∣ ( )

Wecan straightforwardly extend the ‘pure’ definition of theChoi isomorphism to get a ‘mixed’ version. Let
A A: I O  ( ) ( ) be a linearmap. It is Choi operator is defined as

M i j i j , A7A A

ij

A AI O I Oå= ñá Ä ñá∣ ∣ (∣ ∣) ( )

which is a positive operator if and only if is completely-positive (CP) [57]. Onemay check that the
isomorphism can be inverted by using the formula

Mtr . A8A
A A T A

I
I O AI O r r= Ä( ) ( · ) ( )

The above equation can be used to show that is trace-preserving iff MtrA
A A A

O
I O I= .
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Wealso collect here the following identity, allowing to express the product ofmatrices in theChoi
representation.

PropositionA.1. Let P A A F, , ,I O be isomorphic finite dimensional Hilbert spaces, and letV P A V: , :I1 2
A A V A F, :I O O3  be linearmaps. Then

V V V V V V . A9PF A A PA A F
3 2 1 2 1 3

I O I O*=∣ ⟫ ⟪ ∣ ∣ ⟫ ∣ ⟫ ( )

Proof.

V V V k k V V j j i V i A10A A PA A F

ijk

A T A T P A A F
2 1 3 2 1 3

I O I O I O I O* å= á Ä á ñ Ä ñ Ä ñ Ä ñ⟪ ∣ ∣ ⟫ ∣ ⟫ ( ∣ ( ∣ ) ) · (( ∣ ) ∣ ∣ ( ∣ ) ) ( )

j V i V j V i A11
ij

T T P F
2 1 3å= á ñ ñ ñ( ∣ ∣ ) · ( ∣ ) ( ∣ ) ( )

V j V i i V j A12
ij

T P F
1 3 2å= ñ Ä ñá ñ( ∣ ) ( ∣ ∣ ∣ ) ( )

V j V V j A13
j

T P F
1 3 2å= ñ Ä ñ( ∣ ) ( ∣ ) ( )

j V V V j V V V . A14
j

P F PF
3 2 1 3 2 1å= ñ Ä ñ =∣ ( ∣ ) ∣ ⟫ ( )

+

Appendix B.Generalisation ofMarcus’ theorem

In this sectionwe recallMarcus’ theorem [58], and give it a slight generalisation. Let ,1 2  beHilbert spaces,
and let f : 1 2   ( ) ( ) be amap.We say that f is unitarity preserving if f (U) is unitary for all unitaries
U 1 Î ( ). Inwhat followsHilbert spaces are always finite-dimensional.

TheoremB.1 (Marcus [58]). Let be a finite-dimensional Hilbert space, and let f :    ( ) ( ) be a unitarity
preserving linearmap. Then either

f U AUB B1=( ) ( )

f U AU Bor , B2T=( ) ( )

where A B, are constant unitarymatrices, andwhereT is the transpose in the computational basis.

In virtue of theChoi isomorphism, this theorem is equivalent to the fact that the only channels on a systemof
two qudits that preserve the set ofmaximally entangled states are products of local unitaries and swap [59, 60].

Inwhat follows, wewill prove an analogous theoremB.5 for the case when f�sends d�× �dmatrices to d d¢ ´ ¢
matrices, with d¢ an integermultiple of d.

We assume for themoment that f (U) is unitary for all unitariesU, and that f  =( ) . There is no loss of
generality by assuming the second property, because if f only satisfies thefirst property, then f U f f U¢( ) ≔ ( ) ( )†

satisfies both.

LemmaB.2. Let ,1 2  beHilbert spaces with dimensions d1 and d2, respectively. Let f : 1 2   ( ) ( ) be a
unitarity preserving linearmap such that f 1 2 =( ) . Then d

d
2

1
must be an integer, and if , 1 y y f fñá ñá Î∣ ∣ ∣ ∣ ( ) are

two orthogonal projectors onto pure states, then f y yñá(∣ ∣) and f f fñá(∣ ∣) are two orthogonal rank d

d
2

1
projectors.

Proof.Assumewithout loss of generality that f 1 2 =( ) . Let P 1 Î ( ) be a projector, and define

U P2 . B3P 1= - ( )

This is a hermitian unitary, therefore, iUP
1

2 1 +( ) is unitary. The unitarity preserving property of f, together
with linearity, implies that

f if U f if U
1

2
, B4P P1 1 2  + - =( ( ) ( ))( ( ) ( ) ) ( )† †

f U f U , B5P P=( ) ( ) ( )†

f U f U , B6P P 2=( ) ( ) ( )
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f f P f P4 4 , B71
2

2 - + =( ) ( ) ( ) ( )

f P f P , B82 =( ) ( ) ( )

so that f P( ) is a projector.
Now for any 1yñ Î∣ , wewrite the corresponding projector as P f y yñáy ≔ (∣ ∣). Then since f 1 2 =( ) , we

have that

P f 0. B91 y y- ñá =y ( ∣ ∣) ( )

For any state 1fñ Î∣ orthogonal to yñ∣ , we can decompose 1 y y- ñá∣ ∣as a sumof d 11 -( ) orthogonal rank
one projectors containing f fñá∣ ∣. From equation (B9)we then get that P P 0=y f whenever 0f yá ñ =∣ .

Let 0 , 1 1ñ ñ Î∣ ∣ be any two orthogonal states, with corresponding projectors P P,0 1 2 Î ( ). Define
0 11

2
ñ = ñ  ñ∣ (∣ ∣ ), as well as

Z 0 0 1 1 , B10= ñá - ñá∣ ∣ ∣ ∣ ( )

X , B11= +ñá+ - -ñá-∣ ∣ ∣ ∣ ( )

P f P P , B12c 0 1= - -( ) ( )

P f . B13= ñá (∣ ∣) ( )

Then,V X Z 0 0 1 11

2
+ + - ñá - ñá≔ ( ) ( ∣ ∣ ∣ ∣) is a unitary and for f to be unitary preservingwemust have

f V f V P P P P P
1

2
, B14c2 0 1

2

 = = - + - ++ -
�

�
�

�

�
�( ) ( ) ( ) ( )†

P P P P P P P P P P P P P
1

2

1

2
B15c2 0 1 0 1 0 1 = + + + + + - - + - -+ - + - + -( ) ( ) ( )( ) ( )( ) ( )

P P P P P P P P B160 1 0 1 - - = - - -+ - + -( )( ) ( )( ) ( )

P P P P P P P P , B170 1 0 1 - = - - - -+ - + -( ) ( )( )( ) ( )
where in the last equationwemultiplied both sides to the right with P P-+ -( ).

Taking the trace on both sides gives

P P P P P P P Ptr tr tr , B180 1 0 1 0 1- = - + - = - -+ -( ) (( )( )) ( ) ( )

P Ptr tr . B190 1= ( )

Thismeans that the Pψ all have the same trace irrespective of the state yñ∣ . Finally, decomposing 1 into any
orthonormal basis containing yields

d P f dtr tr , B201 1 2= =y( ) ( ( )) ( )

sowefinally reach our conclusion that for all yñ∣ ,

P
d

d
tr . B212

1

=y( ) ( )

Since Pψ is a projector,
d

d
2

1
must be an integer.

+

The above shows that the dimension d2 needs to be an integermultiple of d1. In all that follows, we take this
into account by explicitly by introducing A and E , Hilbert spaces of dimension d d,A E , with preferred
bases a e,a

d
e
d

0
1

0
1A Eñ ñ=

-
=
-{∣ } {∣ } .

LemmaB.3. Let Pa a
d

1
A
={ } be orthogonal rank dE projectors acting on A E  Ä( ), such that Pa a

AEå = Then there
exists a unitaryV such thatVP V a a .a

A E= ñá Ä∣ ∣†

Proof.Decompose each projector into P v va e
d

a
e

a
e

0
1E= å ñá=

- ∣ ∣where all the va
kñ∣ are orthonormal. Defining

V a e va e
A E

a
e

,= å ñ ñ á∣ ∣ ∣ , we haveVP V a a .a
A E= ñá Ä∣ ∣† +

LemmaB.4. Let f : A A E     Ä( ) ( ) be a linear unitarity preservingmap, such that
f a a a a A Eñá = ñá Ä(∣ ∣) ∣ ∣ . Then f U g U A E= Ä( ) ( ) for some linear unitarity-preserving
map g : A A   ( ) ( ).

Proof.Weneed to checkwhat happens to the non-diagonal elements f a bñá(∣ ∣). Define a b1

2
ñ = ñ  ñ∣ (∣ ∣ ),

and note that j j, ,+ñá+ -ñá- ñá∣ ∣ ∣ ∣ ∣ ∣ for j a b,¹ are a complete set of orthogonal projectors. Therefore f
maps them to orthonormal projectors according to lemmaB.2.
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Thismeans that if j a b,¹ , then f j j f 0ñá +ñá+ =(∣ ∣) (∣ ∣) . This implies that

a a b b f f . B22A Eñá + ñá Ä ñá = ñá((∣ ∣ ∣ ∣) ) (∣ ∣) (∣ ∣) ( )

Repeating the same argument for a i bi
1

2
 ñ = ñ  ñ∣ (∣ ∣ ) also implies that

a a b b f f . B23A E
i i i iñá + ñá Ä  ñá =  ñá((∣ ∣ ∣ ∣) ) (∣ ∣) (∣ ∣) ( )

Therefore, since a a b b, , , i iñá ñá ñá  ñá{∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣} spans the subspace a a a b b a b b, , ,ñá ñá ñá ñá{∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣}, we get
that

f a b a a a b b a b b , B24A Ea b g dñá = ñá + ñá + ñá + ñá Ä(∣ ∣) ( ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣) ( )

for some , , , a b g d Î . Thus f has the form f U g U A E= Ä( ) ( ) , and the unitarity-preserving property of f
implies that g is unitarity preserving. +

TheoremB.5 (generalisedMarcus’ theorem). Let f : A A E     Ä( ) ( ) be a linear unitarity preserving
map. Then either

f U A U B B25A E= Ä( ) ( ) ( )

f U A U Bor , B26A T E= Ä( ) (( ) ) ( )

for some fixed unitaries A B, A E  Î Ä( ), andwhereT denotes the transpose in the computational basis.

Proof.Define f U f f U1 =( ) ( ) ( )† . Then f1  =( ) , so according to lemmaB.3, there exists a unitaryV, such that

Vf a a V a a . B271 ñá = ñá Ä(∣ ∣) ∣ ∣ ( )†

Then, from lemmaB.4we get that f U Vf U V2 1( ) ≔ ( ) † is of the form

f U g U , B28A E
2 = Ä( ) ( ) ( )

where g is a unitarity preserving linearmap forwhich the originalMarcus theoremB.1 applies, i.e.

g U CUD B29=( ) ( )
g U CU Dor , B30T=( ) ( )

for some fixed unitaries C D, . Then

f U f f U f V f U V f V g U V , B31A E
1 2   = = = Ä( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( )† †

shows that we have the desired form,with A f V C = Ä( ) ( )† and B D V= Ä( ) . +

AppendixC. The time reversal of a pure process

Let wñ∣ be a pure process vector whose parties have equal input and outputHilbert space dimensions. Taking the
complex conjugate and swapping inputs and outputs yield a valid process

w SWAP SWAP SWAP w , C1r
PA A B B F

PF A A B B
PA A B B FI O I O

I O I O
I O I O*ñ Ä Ä ñ∣ ≔ ( )∣ ( )

whichwe call the time-reversal of wñ∣ .We now show that wrñ∣ is a valid process.

w
d d

U V U V
1

, C2r
A B i j

i j
FP

i
A A

j
B B

,

O I O I*åñ =∣ ∣ ( ) ⟫ ∣ ⟫ ∣ ⟫ ( )

d d
U V U V

1
, C3

A B i j
i j

PF
i
T A A

j
T B B

,

I O I Oå= ∣ ( ) ⟫ ∣ ⟫ ∣ ⟫ ( )†

d d
U V U V

1
, C4

A B i j
i j

PF
i

A A
j

B B

,

I O I O* *å= ∣ ( ) ⟫ ∣ ⟫ ∣ ⟫ ( )† † †

d d
U V U V

1
, , C5

A B i j
r i i

PF
i

A A
j

B B

,

I O I O* *å= ∣ ( )⟫ ∣ ⟫ ∣ ⟫ ( )

where in the third line wemade a basis changeU U V V,i i j j † †. The last equation shows that the reversed
process is equivalently defined by themap

U V U V, , . C6r ( ) ≔ ( ) ( )† † †
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Themap r admits a decomposition into causal frames:

U U U U U, C7r A B A B A
E

A B
A = F Ä P( ) ( ( )( ) ( )) ( )† † † †

U U U . C8A B A
E

A B
A= P Ä F( ) ( ) ( ) ( )† † † †

The above equation shows that Alice’s causal reference frame is given by
U U U U,A

r
B A B A

r
B A BF = P P = F( ) ( ) ( ) ( )† † † †, and similarly for Bob. Theorem 3.3 then implies that wrñ∣ is a valid

pure process.
As a simple example, and as justification for calling this operation ‘time-reversal’, consider the single partite

process U AUB =( ) , where A B, arefixed unitaries. Then it is time-reverse is U B UAr =( ) † †.
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