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Photon interference and bunching are widely studied quantum effects that have also been pro-
posed for high precision measurements. Here we construct a theoretical description of photon-
interferometry on rotating platforms, specifically exploring the relation between non-inertial mo-
tion, relativity, and quantum mechanics. On the basis of this, we then propose an experiment where
photon entanglement can be revealed or concealed solely by controlling the rotational motion of an
interferometer, thus providing a route towards studies at the boundary between quantum mechanics
and relativity.

Introduction. The notions of space and time are at
the core of modern physics and remain an area of in-
tense research [1, 2]. A striking example of how elemen-
tary notions of space and time lead to surprising conse-
quences is the derivation of Lorentz transformations, a
cornerstone of quantum field theory, utilizing only basic
assumptions [3, 4].

The exploration of the special-relativistic regime is his-
torically strongly linked to investigations of the prop-
agation of light [5], e.g. the Michelson–Morley exper-
iment [6]. More recent experiments have also started
to probe the quantum nature of light, e.g. the Hong-
Ou-Mandel (HOM) experiment [7], indirectly testing the
underpinning spacetime symmetries. Quantum optical
interference effects, either one-photon or two-photon, are
thus of fundamental importance [8], as well as providing
paths to technological applications [9].

A further test of special relativity, moving towards the
domain and ideas of general relativity, is possible in sit-
uations where linear acceleration or rotational motion is
present [10]. A notable example is the classical Sagnac
experiment where an interferometer is placed on a rotat-
ing platform [11–13]. More recent experiments include
experimental tests of photonic entanglement in accel-
erated reference frames [14], the demonstration of how
to overcome the shot-noise limit using an entanglement-
enhanced optical gyroscope [15] and the extension of
HOM interference to rotating platforms [16].

In this letter, we propose a new experimental plat-
form based on the Mach-Zehnder interferometer that ex-
plores the relation between interference, entanglement,
and non-inertial rotational motion. In particular, we dis-
cover that by simply setting the apparatus in rotational
motion one can detect or conceal entanglement. We first
provide a theoretical description of quantum experiments
on a rotating platform starting from the Hamiltonian on
a generic Hilbert space which we then apply to study
photon-interferometry experiments. The model also re-
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covers the results for the Sagnac effect in the quantum
regime [17] as well as for the recent demonstration of
photon bunching in a rotating reference frame [16].

Theoretical model. We consider an experimental
platform rotating at angular frequency Ω depicted in
Fig. 1(a). The system is confined to move on a circle
of radius r in the equatorial plane normal to the rotation
axis. We further suppose there is a co-rotating medium
with refractive index n. For the co-rotating observer,
the light propagation speed is c/n in both directions as
can be deduced from symmetry considerations. It is also
instructive to describe the same experiment from the in-
ertial frame of the laboratory: one can formally map the
circular trajectories to straight-line motions as shown in
Fig. 1(b) [18]. In this latter case one has to account for
the light-dragging effect [13], i.e. the Fizeau effect (see
supplementary material).

To describe quantum mechanically the evolution of the
system we choose for convenience the viewpoint of the
co-rotating observer (see Fig. 1(a)). To account for the
non-inertial motion when Ω 6= 0 we start from the Born
chart and exploit the methods of symplectic Hamiltonian
mechanics [19, 20]. In particular, exploiting the so-called
co-moment map from the generators of the Poincaré al-
gebra to Hilbert space operators one finds the following
Hamiltonian (see supplementary material):

ĤBorn = Γ(Ĥ + rΩP̂ ), (1)

where Γ = (1− (Ωr
c )2)−

1
2 is the Lorentz factor. The term

∼ P̂ keeps track of the non-inertial motion of the detec-
tor, P̂ , which is the generator of translations, changes
the relative distance between the detector and the sys-
tem, e.g. in a time δt the relative distance changes by
rΩδt.

We now apply the Hamiltonian in Eq. (1) to photon-
interferometry. We use the Abraham relation between
kinetic momentum and energy [21, 22]:

Ĥ = nc|P̂ |, (2)

We combine Eqs. (1) and (2) to find:

Ĥ
(±)
Born = Γ (1± β) Ĥ, (3)
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Figure 1. Conceptual setup. (a) Description from the view-
point of the co-rotating observer. The counter-rotating (co-
rotating) quantities are shown on the left (right). The
counter-rotating (co-rotating) Hamiltonians are different,
while the light-speed in the two directions is equal (c/n).
D1 (D2) indicate the detectors for the counter-rotating (co-
rotating) direction, respectively. (b) Description from the
inertial laboratory frame represented in a straight line (see
supplemental material). Here both the Hamiltonian and the
speed of light differ in the two directions, i.e. v(−) 6= v(+)

and v(±) 6= c
n
. (b1) Only the light-drag effect is taken into

account; t(+)
i , t(−)

i denote how long it would take to reach the
detectors assuming they would not have moved; the subscript
i stands for “initial”. (b2) Both light-drag effect and the mo-
tion of detectors is taken into account. t(+)

a , t(−)
a denote how

long it takes to reach the detectors; the subscript a stands for
“actual”. v = rΩ is the speed of the detectors as seen from
the inertial laboratory reference frame.

where the positive (negative) superscript denotes the
counter-rotating (co-rotating) motion to be measured by
the detector D1 (D2), and β = rΩ

nc . We note that Eq. (3)
suggests a simple physical interpretation of the Hamil-
tonian as the relativistic Doppler-shifted energy of the
system.

We can finally write the total Hamiltonian of the sys-
tem:

ĤBorn = Ĥ
(+)
Born ⊗ I + I⊗ Ĥ(−)

Born, (4)

where we have assumed that the photons moving in oppo-
site directions do not interact, and I denotes the identity
operators. In summary, the total Hilbert space can be
written as H = H(+) ⊗H(−), where H(+)(H(−)) denotes
the Hilbert space of the counter-rotating (co-rotating)
modes.

The time parameter t that keeps track of the dynamics
through Schrödinger’s equation is ticking as a clock fol-
lowing the detectors’ motion; this is a direct consequence
of the quantization procedure that leads to the Hamilto-
nian in Eq. (4). However, here we are mainly interested
in the dominant effects where one can approximate the
Lorentz factor as Γ ∼ 1 and the distances and times co-
incide to those measured by a ruler and a clock in the
inertial laboratory frame.

Photon-interferometry experiments. We now fur-
ther develop the model by adopting Glauber’s theory of
photo-detection [23]. Here we will focus on the experi-
mental situation of photons with a coherence time that
is short compared to the time resolution of the detec-
tors, but temporal aspects could be easily taken into ac-
count [24, 25].

To analyze photon-interferometry experiments we will
work in the Schrödinger picture [26], where we will de-
note the initial (final) state with the subscripts i (f). We
consider the experimental situation where at time ti = 0
the photon is prepared in a state |ψi〉, and then con-
strained to move in a circular motion for a time tf = L

c n
resulting in a state |ψf 〉, where L is the traveled distance.
Although one can always postulate a given initial state
it is nonetheless instructive to compare the state |ψi〉,
which is assumed to be generated by the apparatus co-
rotating with the platform, with the state generated by
the same apparatus when the platform is not rotating,
i.e. when Ω = 0. In particular, it is reasonable to assume
that the frequencies of the initial states generated in the
two experimental situations differ by at most ∼ Ω

2π . How-
ever, such a difference in the initial state produces only
sub-leading effects which are not amplified during time-
evolution, as can be explicitly verified using the formulae
we will develop. One can thus approximate the initial
states generated on the rotating platform with the states
that would be generated at Ω = 0.

The time-evolution is given by the usual Schrödinger
equation with the Hamiltonian in Eq. (4), i.e.

Ĥ(2) =~
∫
dω
[
ω(+)â†(ω)â(ω) + ω(−)b̂†(ω)b̂(ω)

]
, (5)

where we have defined ω(±) = (1± β)ω, and â (b̂) is the
counter (co-rotating) mode.

The state |ψf 〉 then interferes at a beam-splitter and
one measures the outputs using two-detectors: the input
modes are â and b̂ and we denote the output modes by
ĉ and d̂. Here we consider the following relation between
the input and output modes:[

ĉ(ω)

d̂(ω)

]
=

1√
2

[
1 1
1 −1

] [
â(ω)

b̂(ω)

]
. (6)

In particular, we are interested in the probability of de-
tecting photons in the modes ĉ or d̂. To this end, it is
convenient to define the temporal modes [27]:

ĉ(t) = Ft[ĉ(ω)], d̂(t) = Ft[d̂(ω)], (7)

where Ft[ · ] = 1√
2π

∫
dω · e−iωt. In particular, we define

the single-photon probability of detection as

P (1)
c =

∫
dt〈ψf |ĉ†(t)ĉ(t)|ψf 〉, (8)

with a similar definition for the probability P (1)
d for the

output mode d̂. In addition, we also define the the two-
photon probability of detection

P (2) =

∫
dt1

∫
dt2〈ψf |d̂†(t1)ĉ†(t2)ĉ(t2)d̂(t1)|ψf 〉, (9)

which gives the coincidence probability. For the case
P (2) < 0.5 we speak of coalescence or HOM photon
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bunching and for P (2) > 0.5 we speak of photon anti-
coalescence or anti-bunching. Classically, one is lim-
ited to values 0.25 < P (2) < 0.5, making coincidence
probabilities a valuable tool to assess the quantum na-
ture of the electromagnetic field. Importantly, anti-
symmetrization and photon anti-coalescence reveals hid-
den entanglement, as has already been demonstrated ex-
perimentally in a non-rotating setup [28].

We consider first the experimental situation with a
generic single-photon input state:

|ψf 〉 =

∫
dω
[
ψa,f (ω)â†(ω) + ψb,f (ω)b̂†(ω)

]
|0〉, (10)

where ψa,f (ω), ψb,f (ω) are one-photon wavefunctions.
From Eqs. (8) and (10), exploiting Eqs. (6) and (7), we
find

P
(1)
c,d =

1

2
± 1

2

∫
dω
[
ψ∗a,f (ω)ψb,f (ω) + c.c.

]
, (11)

where we have imposed the normalization of the state, i.e.
〈ψf |ψf 〉 = 1. As an example let us consider the Quan-
tum Sagnac experiment [17]: a photon is prepared in a
superposition of counter-propagating modes before inter-
fering at the beam splitter (see supplementary material).
Specifically, we consider the initial state in Eq. (10) with
the one-photon wavefunctions ψa,i(ω) = ψb,i(ω) = g(ω),
where g(ω) is a Gaussian with mean frequency µ and
bandwidth σ. After the time-evolution using Eq. (5) we
have the state in Eq. (10) with ψa,f (ω) = g(ω)eiωβtf and
ψb,f (ω) = g(ω)e−iωβtf . Using Eq. (11), and making the
further approximation |g(ω)|2 ∼ δ(µ − ω), we find the
single-photon detection probability:

P
(1)
c,d =

1

2
(1± cos (µts)) , (12)

where ts = 8πAf/c2 is the classical Sagnac delay, f =
Ω/2π is the rotation frequency, A = πr2 is the encircled
area, r is the circle radius.

We next consider the two-photon state

|ψf 〉 =

∫
dω1

∫
dω2 ψf (ω1, ω2)â†(ω1)b̂†(ω2)|0〉, (13)

where ψf (ω1, ω2) is the two-photon spectrum. From
Eqs. (9) and (13), exploiting Eqs. (6), (7), we find

P (2) =
1

2
− 1

2

∫
dωψ∗f (ω1, ω2)ψf (ω2, ω1), (14)

where we have imposed the normalization 〈ψf |ψf 〉 = 1.
As an example we consider the Hong-Ou-Mandel exper-
iment on a rotating platform [16]: two identical photons
counter-propagate before interfering at a beam-splitter
(see supplementary material). The experimentalist con-
trols the initial time-delay δt of the mode â; the initial
state is given by Eq. (13) with the two-photon spectrum
ψi(ω1, ω2) = g(ω1)g(ω2)e−iω1δt. After the time-evolution
we find the final state in Eq. (13) with

ψf (ω1, ω2) = g(ω1)g(ω2)e−iω1δteiβ(ω1−ω2). (15)

BS

BS

laser
BBO

PD1PD2

ab

Ω

Figure 2. Layout of proposed quantum Sagnac/Hong-Ou-
Mandel interferometer on a rotating platform. Two entangled
photons are emitted from the BBO crystal: photon a (purple
arrow) enters a Sagnac interferometer and exits towards the
upper 50/50 beamsplitter (BS) where 2-photon HOM interfer-
ence occurs with photon b (green arrow) that circles around
the setup (in order to maintain the same overall path length
as photon a). Coincidence counts are measured between de-
tectors PD1 and PD2 as a function of the rotation frequency
Ω.

Using Eq. (14) we then immediately find the coincidence
probability:

P (2) =
1

2
− 1

2
e−σ

2(ts−δt)2 . (16)

where ts is the classical Sagnac delay.
In the previous paragraph we have considered identi-

cal photons with a separable spectrum [7], but one could
also consider identical frequency-entangled photons. For
example, if we consider spontaneous parametric down
conversion (SPDC) type I two-photon generation [29] we
again find the coincidence probability in Eq. (16). It
would thus seem that entanglement in combination with
rotational motion leaves no trace on the photon coinci-
dence rate, P (2), measurement. We now further explore
this question.

Manifestation of entanglement through rota-
tion. Entanglement can manifest itself in a HOM co-
incidence rate measurement through anti-coalescence,
i.e. P (2) > 0.5. In particular, for a completely anti-
symmetric spectrum, i.e. ψ(ω1, ω2) = −ψ(ω2, ω1), one
obtains perfect anti-coalescence, but even with a par-
tially anti-symmetric spectrum one can have P (2) > 0.5,
thus witnessing entanglement. As we show below, this
manifestation of entanglement may be susceptible to the
motion of the interferometer.

We consider the experimental setup depicted in Fig. 2.
As an initial state we consider a SPDC type I two-photon
state (i.e. two photons with the same polarisation) with
spectrum

ψi(ω1, ω2) = δ(ω1 + ω2 − 2µ)g(ω1)g(ω2), (17)

where we have omitted the normalization. We note that
the initial spectrum in Eq. (17) is completely symmetric,
i.e. ψ(ω1, ω2) = ψ(ω2, ω1), and gives P (2) = 0 at Ω = 0.
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Figure 3. Coincidence plot as a function of the angular
frequency Ω = 2πf . We have set the interferometer area
A = 22.7m2, µ = 2.36 × 1015Hz, corresponding to a typical
photon carrier wavelength of 800 nm. Two curves are shown
for two different bandwidths, σ = 1.47 × 1013Hz (blue solid
curve) and σ = 1.18×1014Hz (dashed red curve), correspond-
ing to 5 nm and 40 nm bandwidths, respectively. The shaded
region corresponding to P (2) > 0.5 indicates the region where
measurements imply photon entanglement.

We now consider the same setup with the interferome-
ter in a constant rotational motion with frequency Ω 6= 0.
The final spectrum of the two-photon state changes to

ψf (ω1, ω2) = ψi(ω1, ω2)cos(βω1tf )e−iβω2tf , (18)

where the factor cos(βω1tf ) results from the interference
of the mode â; by ‘final state’ we again mean the state
that arrives at the last beam-splitter. Using Eq. (14) we
then find the coincidence probability

P (2) =
1

2
−

cos(µts)e
− 1

8σ
2t2s + 1

2

(
1 + e−

1
2σ

2t2s

)
2(1 + cos(µts)e−

1
8σ

2t2s)
. (19)

We have plotted P (2) as a function of the angular fre-
quency Ω in Fig. 3 with the interferometer area A =
22.7m2 (assuming the photons travel through a 100 m
long fibre, wound 35 times along a 0.9 m diameter loop)
and µ = 2.36× 1015 Hz, corresponding to a typical pho-
ton carrier wavelength of 800 nm. Two curves are shown
for two different photon bandwidths, σ = 1.47× 1013 Hz
(blue solid curve) and σ = 1.18 × 1014 Hz (dashed red
curve), corresponding to 5 nm and 40 nm, respectively.

The shaded region corresponding to P (2) > 0.5 indicates
the presence of entanglement that manifests as photon
anti-coalescence. Short bandwidth, i.e. long coherence
photons show a periodic series of revivals of entangle-
ment with increasing rotation frequency. For larger pho-
ton bandwidths, i.e. shorter coherence lengths, increas-
ing the relative photon delay by increasing the rotation
speed leads to a reduction of the coincidence peak val-
ues and of the overall fringe visibility. This is a result of
the loss of mutual coherence between the two interfering
photons.

The anti-symmetrization of the photon spectrum,
which leads to a modification of the coincidence prob-
ability, is a direct consequence of the non-inertial motion
of platform. More generally, this shows that rotational
motion can activate dormant asymmetries in the experi-
mental setup leading to an anti-symmetric spectrum. It
is also interesting to consider an initial anti-symmetric
spectrum ψi; the proposed experiment shows that ψi can
become symmetrized during time-evolution, fully con-
cealing the anti-coalescence signature of entanglement.

These effects can be traced to the impossibility of clock
synchronization along a closed loop on the rotating plat-
form. In particular, the Hamiltonian in Eq. (5) can be
linked to the effect of clock desynchronization [10]. It is
important to note that this is a genuine relativistic effect,
which is not expected to arise in a Newtonian theory, al-
though it imprints a non-negligible experimental trace
in the regime typically associated with the latter. This
is different from the observer-dependent entanglement ef-
fect in non-inertial reference frames [30], expected to arise
as a consequence of the Unruh radiation [31, 32] which
vanishes at low accelerations.

Conclusions. We have developed a formalism
for describing interferometry experiments on rotat-
ing platforms. We have first analyzed two recent
photon-interferometry experiments, namely, the quan-
tum Sagnac and the Hong-Ou-Mandel experiment on a
rotating platform. We have then proposed a modified
Hong-Ou-Mandel interferometer where entanglement can
be revealed or concealed depending on the rotational fre-
quency. These results indicate new directions for inves-
tigating the notions of space and time as well as its con-
sequences in a quantum mechanical regime.
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Supplementary material to “Revealing
and concealing entanglement with

non-inertial motion”

S1: LABORATORY REFERENCE FRAME

In this section we briefly discuss the relation between
the co-rotating reference frame and the inertial labora-
tory reference frame, focusing on the classical effects. We
start by noting that the speed of light in the co-rotating
reference frame, where the co-rotating medium is station-
ary, is the same in the co-rotating and counter-rotating
directions; specifically we have that the velocities are ± c

n .
Using the relativistic velocity addition formula we find
the corresponding velocities u(±) in the inertial labora-
tory frame:

u(±) =
± c
n + v

1± c
n
v
c2
≈ ± c

n
+ αv, (S1)

where v = rΩ, and α = 1− 1
n2 . The corresponding speeds

are given by v(±) ≈ c
n ±αv. See Fig. 1(b) for a graphical

illustration of this light-dragging effect, which coincides
with the Fizeau effect, but could in principle differ [S1].

We assume an initial spatial-distance L between the
systems and the detectors. We can convert L into a time-
distance, i.e. the initial time-distance (see Fig. 1(b1)),
which is given by t(±)

i = L
v(±) . Furthermore, exploiting

Eq. (S1), we find:

t
(±)
i ≈ L

c
n∓ vL

c2
αn2. (S2)

However this is different from the actual time it takes the
signals to reach the detectors (see Fig. 1 (b2)): we need
to take into account also the motion of the detectors. In
particular we have the condition v(±)t

(±)
a = L ± vt(±)

a ,
which after some algebra readily gives

t(±)
a =

L

v(±) ∓ v
≈ L

c
n± Lv

c2
. (S3)

In this way we immediately recover the classic Sagnac
delay given by ts = t

(+)
a − t(−)

a = 2Lv
c2 . Specifically, to

find the usual expression of the Sagnac delay we set L =
2πrN , where N denotes the winding number, and define
the encircled area as A = Nπr2. Using v = rΩ = r2πf
we then immediately find [S1, S2]:

ts =
8πAf

c2
. (S4)

From this discussion it is clear why the description in
the co-rotating reference frame is slightly more conve-
nient: there only the non-inertial motion of the detectors
has to be taken into account (through the Hamiltonians).

On the other hand, in the laboratory inertial reference
frame, one has to account for the motion of the detectors
as well as of the medium (again through the Hamiltoni-
ans). In short, the advantage of the co-rotating reference
frame is the absence of the light-dragging effect.

The Sagnac delay can be obtained also from the per-
spective of the co-rotating observer where it arises from
clock desynchronization [S2].

S2: DERIVATION OF THE HAMILTONIAN

In this section we derive the Hamiltonian for the ex-
periments depicted in Fig. 1(a): we consider a rotating
platform, which spins at angular frequency Ω, and we
restrict to the dynamics on a circle of radius r, centered
on the symmetry axis of the rotating platform. Specif-
ically, we will adopt the methods of representation the-
ory [S3] and symplectic Hamiltonian mechanics [S4] to
map the time-evolution generator of the Poincaré algebra
to a Hilbert space operator. One could of course make
an ad-hoc quantization in a non-inertial reference frame,
and obtain a Hamiltonian, but the results might be incon-
sistent with basic symmetry requirements. Anyhow, we
choose the former method which constructs the Hamilto-
nian starting from basic symmetry considerations of the
Poincaré group. As argued in the supplemental material
S1 we will for convenience describe the experiment in the
co-rotating reference frame.

One typically starts describing the experiments by set-
ting up a chart, e.g. a Cartesian chart. We note that the
chosen spacetime coordinates critically reflect the motion
of the observer which affects the resulting description of
the dynamics. For example, two observers moving with
different speeds or accelerations will use different charts,
and hence ascribe different energies to the same system,
and hence care must be taken with the choice of the co-
ordinate system. In the following we will assume that
the detectors are stationary in the observer’s chart: with
this choice there is a simple relation between observables
in the description and the quantities measured by the
detectors.

We start by recalling the quantization procedure in an
inertial reference frame, i.e. with Ω = 0. In our case, we
will use the polar chart for the laboratory inertial refer-
ence frame. Specifically, the line-element in an inertial
reference frame expressed in the polar chart is given by

ds2 = c2dt2 − r2dφ2, (S5)

where r is a constant in our case (we have restricted the
analysis to a 1 + 1 spacetime). From the line-element in
Eq. (S5) it is then possible to immediately read the time-
evolution Killing vector ( 1

c∂t)
µ [S5]. The time-evolution

Killing vector (more precisely a vector field) is the tan-
gent vector to the flow lines of a system in free motion.
Using the co-moment map we can then map the time-
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evolution Killing vector to the Hilbert space Hamilto-
nian [S3, S4]:

∂t → Ĥ, (S6)

where Ĥ is the representation of the time-evolution gen-
erator on the considered Hilbert space. For example, for
a single mode â we would have Ĥ = ~ωâ†â, where ω is
the frequency of the oscillator.

To apply the quantization procedure in a non-inertial
reference frame, i.e. with Ω 6= 0, we have to make an
additional step: we have to relate the co-rotating ref-
erence frame to the laboratory inertial reference frame.
There reason is simple: we do not know how to directly
quantize in a non-inertial reference frame, but only in
the inertial reference frame. We denote the laboratory
(polar) and the co-rotating (Born) coordinates by the
unprimed (xµ = (ct, rφ)) and primed (xµ

′
= (ct′, rφ′))

labels, respectively. In particular, we have the following
relation [S6]:

dt = dt′, (S7)
dφ = dφ′ + Ωdt′. (S8)

It is straightforward to find the corresponding transfor-
mation matrix

∂xµ

∂xµ′
=

[
1 0
rΩ
c 1

]
, (S9)

and to express the Minkowski metric in the two coordi-
nates systems, i.e.

ds2 =c2dt2 − r2dφ2 (S10)

=c2(1− Ω2r2

c2
)dt′2 − 2Ωr2dt′dφ′ − r2dφ′2. (S11)

From Eqs. (S10) and (S11) we can immediately find
the relevant Killing vectors ( 1

c∂t′)
µ′ = (1, 0)>, ( 1

c∂t)
µ =

(1, 0)>, and ( 1
r∂φ)µ = (0, 1)>. Using Eq. (S9) we can

then express ( 1
c∂t′)

µ′ in the laboratory coordinates, i.e.

(
1

c
∂t′)

µ =
∂xµ

∂xµ′
(
1

c
∂t′)

µ′ , (S12)

which gives ( 1
c∂t′)

µ = (1, rωc )>, and thus

∂t′ = ∂t + rΩ
1

r
∂φ . (S13)

We have now expressed the time-evolution Killing vector
∂t′ , which generates the dynamics in the co-rotating ref-
erence frame, in terms of the Killing vectors ∂t and 1

r∂φ,
which generate time-evolution and space-translation in
the inertial laboratory reference frame, respectively. We

can now map the latter Killing vectors to operators on a
Hilbert space using the usual prescription

∂t → Ĥ, (S14)
1

r
∂φ → P̂ . (S15)

Exploiting Eqs. (S13)-(S15), we can now finally write the
time-evolution operator

ĤBorn = Ĥ + rΩP̂ , (S16)

which we name Born Hamiltonian. Note that Eq. (S16)
captures the idea that the dynamics on a rotating plat-
form can be fully explained in terms of the non-inertial
motion of the detector [S7]: the term rΩP̂ describes the
non-inertial motion of the detector, i.e. at each instant of
time the detector is translated with respect to the system
which evolves freely on a circle.

We note that the transformation in Eq. (S7) leaves
the time coordinate unchanged. This can be seen as a
Galilean-type transformation on a circle, which we now
generalize to a Lorentz-type transformation. In particu-
lar, we consider

dt = Γdt′ +AΓ
r2Ω

c2
dφ′, (S17)

dφ = BΓdφ′ + ΓΩdt′, (S18)

where Γ = (1− (Ωr
c )2)−

1
2 . If we set A = 1 and B = 1 the

transformation is formally equivalent to a Lorentz boost
with speed v = rΩ, while if we set A = 0 and B = Γ−1 we
obtain the transformation considered by Post [S1]. We
find that the Hamiltonian is insensitive to the value of A,
but depends on the chosen value of B. In the following
we set B = 1 which leads to the Hamiltonian

Ĥrel
Born = Γ(Ĥ + rΩP̂ ). (S19)

Eq. (S19) can be seen as a relativistic Born Hamiltonian,
which generalizes Eq. (S16).

We can also analyze non-uniform rotations using the
above formalism by considering a time-dependent angu-
lar frequency Ωt (we remark that the time-evolution vec-
tor does not need to be generally a Killing vector). We
repeat the derivation in this section with the formal re-
placements

Ω→ Ωt, (S20)

Γ→ Γt = (1− (
Ωtr

c
)2)−

1
2 . (S21)

At the end we obtain in place of Eq. (S19) the following
Hamiltonian:

Ĥrel
Born(t) = Γt(Ĥ + rΩtP̂ ). (S22)
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Figure S1. (a) Quantum Sagnac experiment [S8]. The ele-
ment C denotes the circulator which allows only the paths
1 to 2 and 2 to 3. (b) Hong-Ou-Mandel experiment on a
rotating platform [S9].

In this case one expects two physical effects, one re-
lated to the (geometrical) Sagnac phase, and a possible
new contribution related to a dynamical phase, which
typically emerges in situations where there is a time-
dependence in the Hamiltonian.

S3: NOTES ON EXPERIMENTAL SETUPS

In this section we summarize the two experimental
schemes that form the building blocks, conceptually as
well as experimentally, for the new proposal to demon-
strate how entanglement can be revealed or concealed
with non-inertial motion. The Quantum Sagnac experi-
ment is depicted in Fig. S1(a): a photon enters through
the path 1, is directed into path 2 and then interferes
for the first time with the beam splitter. After evolving
in counter-progating directions, the photon then inter-
feres again at the beam splitter, after which it is de-

tected. The Hong-Ou-Mandel experiment on a rotating
platform is depicted in Fig. S1(b): two identical photons
counter-propagate before interfering at a beam-splitter.
One detects the arrival of the photons and extracts the
coincidence probability, P (2). In both cases, the setups
are placed on a rotating platform.

The proposal shown in Fig. 2 can be seen as a com-
bination of the setups shown in Fig. S1, which can be
exploited to gain an intuitive understanding of the re-
sults. For example, the asymptotic value for the coinci-
dence probability in Fig. 3 can be intuitively understood
in terms of Quantum Sagnac and the HOM setups. From
Eq. (19) we find at high rotation frequency the value
P (2) ∼ 1/4; this is halfway between a full dip, P (2) ∼ 0,
and the case without bunching or anti-bunching, P (2) ∼
1/2. The paths denoted by the purple and blue arrows in
Fig. 2 can be related to the Quantum Sagnac: at high ro-
tation frequency the counter-propagating mode (blue ar-
row) no longer interferes with the co-rotating modes due
to non-overlapping frequency spectra. Loosely speak-
ing, the counter-propagating mode (blue arrow) can be
heuristically associated to half of the initial mode â,
while the other half of the mode â co-rotates (purple
arrow) and interferes with the other co-rotating mode b̂
(green arrow). As the frequency spectrum of the two
co-rotating modes is identical, i.e. no time-delay exists
between them, they bunch together at the output ports
of the beam-splitter. Hence the counter-rotating (co-
rotating) part of the mode â is associated with P (2) ∼ 1/2
(P (2) ∼ 0). The coincidence probability at high rotation
frequency can be thus seen as the average behaviour, i.e.
P (2) ∼ (0 + 1/2)/2 = 1/4.
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